Press "Enter" to skip to content

TensorFlow2构建模型的五个境界

本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.

一、纯手工

 

定制化程度高,非常灵活,如自定义层、损失函数、优化器、性能评估、训练模型方法等,但编程难度较高。

 

具体实例

 

二、继承tf.Module

 

定制化程度高,如自定义层、损失函数、优化器、性能评估、训练模型方法等,且可以使用保存或恢复模型。

 

具体实例

 

三、继承tf.Module且使用AutoGraph

 

定制化程度高,如自定层、损失函数、优化器、性能评估、训练模型方法等,且可以使用保存或恢复模型。通过使用Autograph可达到静态图的性能,极大提升训练模型效率。不过使用Autograph时要注意对应的编码规范,如被@tf,function装饰的函数尽可能tensorflow函数,如tf.print,tf.range等(控制语句无此限制),避免在被@tf,function装饰的函数内部定义tf.Variabe等。

 

具体实例

 

四、网络层和模型使用子类方法构建

 

用子类方法构建网络层、网络模型是tensorflow2才有的,这种风格类似于PyTorch构建方法。TensorFlow1构建网络一般使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型。当然,这两种方法在TensorFlow2也是常用方法。构建网络层时继承

 

tf.keras.layers.Layer,构建网络模型继承tf.keras.Model, 然后使用compile编辑模型,用fit训练模型。这样构建的网络既有一定的灵活性,又不失简洁性。

 

具体实例

 

五、使用tf,keras的Sequential模型按层顺序构建模型

 

最简洁,构建模型很简单,可是直接使用内置的层、损失函数、优化器、评估指标等,训练也可直接使用函数fit即可。Keras 提供了称为tf.keras.Model 的全功能模型类。它继承自 tf.keras.layers.Layer,使用SaveModel保存模型,可以非常方便移植到其他非Python环境(具体环境可参考下图)。

 

Be First to Comment

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注