Press "Enter" to skip to content

AI工程师必备技能 – 凸优化介绍

前言

 

优化方法是几乎所有机器学习模型中最重要的核心部分,其重要性也是需要强调的。凸优化是优化方法论中的特例,是一个非常大的领域,想要细致地学习需要花费不少时间,本文作为阶段性学习的总结, 通过算法思维和常见算法的目标函数引出凸优化内容,并介绍了作为算法工程师我们最需要了解的凸优化领域的重要方法论 ,希望通过分享给大家,能够对大家在算法领域的学习有所帮助,如果本文中的方法论有误的话,还请各路大神进行指正。

 

目录

 

算法思维及常见目标函数

 

凸集与凸函数

 

经典凸优化问题

 

非凸优化问题的优化

 

一. 算法思维及常见目标函数

 

算法思维

 

针对一个AI问题,我们都可以将AI问题拆解为建立模型+优化模型这两块内容的,对于任何一个AI问题,其目标函数都可以用以下形式表示:

 

 

我将解决业务问题中的常用套路称为算法思维,并总结了以下4个重要步骤:

 

 

将业务场景中需要解决的问题转化为数学问题,并写出严格的数学模型(目标函数)

 

针对写出的数学模型判断凹凸性

 

根据目标的函数的凹凸性判断问题类型(如果目标函数是凸函数,我们需要判断该函数所属问题类型,常见的问题类型有Linear Programming、Quadratic Programming等;如果目标函数是非凸函数,也需要判断其所属问题类型,常见有Setcover Problem,Max flow Problem等)

 

根据不同的问题类型使用不同的优化方法论解决问题。

 

 

其实在实际解决问题的过程中,其实大家都不太会在意第1,2个步骤点,可能都会直接通过经验去查找相应的工具解决问题,但是这样的解决思路是不太好的,因为在这个过程中,我们可能不知道需要解决的问题和我们选择的工具是否匹配,如果结果不太理想,我们可能也不知道其中的原因。但是如果我们在解决问题前,定义了严格的目标函数,我们不仅可以针对该目标函数选择相应的优化方法,也可以根据业务场景,对目标函数进行相应调整,增加项目的成功率。

 

常见目标函数

 

我将工作中可能会用到的常见的一些算法的目标函数进行了列举,如下:

 

二. 凸集与凸函数

 

凸优化的重要性

 

从函数的凹凸性而言,我们通常把函数分为凸函数和非凸函数。凸函数是有且只有全局最优解的,而非凸函数可能有多个局部最优解,这些特性我会在下文中进行详细解释。在前言中,我提到过优化问题是机器学习模型中的核心部分,而针对不同模型,有不同的方法论对其目标函数进行优化。例如针对逻辑回归、线性回归这样的凸函数,使用梯度下降或者牛顿法可以求出参数的全局最优解,针对神经网络这样的非凸函数,我们可能会找到许多局部最优解。

 

不难看出,我们希望在实际解决问题过程中,都希望我们建立的目标函数是凸函数,这样我们不必担心局部最优解问题,但实际上,我们遇到的问题大多数情况下建立的目标函数都是非凸函数,因此我们需要根据场景选择不同的优化方法。

 

凸优化定义

 

就定义而言, 凸优化是:在最小化(最大化)的优化要求下,目标函数是凸函数且约束条件所形成的可行域集合是一个凸集的优化方法,因此凸优化的判定条件有两个,1.函数定义域是凸集 2.目标函数是凸函数。

 

凸集的定义:假设对于任意x, y ∈ C and 任意参数α ∈ [0, 1], 我们有αx + (1 − α)y ∈ C,集合C为凸集。

 

凸集的理解:对凸集的理解,我们可以分别从理论定义的角度和函数图像的角度两方面理解。从定义上讲,对于集合C中的任意两个元素x和y,需要满足αx + (1 − α)y 的值也需要在集合C中;从函数图像角度讲,这个定义中的式子含义是,x、y两点连线上的任意一个点都需要属于集合C,如下图所示,任何证明集合是凸集的方法都可以通过定义和函数图像两方面进行。

 

 

凸集的性质:两个凸集的交集也是凸集。

 

常见凸集与证明方法:

 

 

凸函数定义:函数f的定义域为凸集,对于定义域里的任意x, y,函数满足: 

 

 

 

凸函数与凹函数之间的关系:如果f(x)是凸函数,则-f(x)是凹函数

 

凸函数的证明方法(函数定义域为凸集的前提下):

 

 

常见凸函数及证明:

 

 

三. 经典的凸优化问题

 

维基百科中罗列了一些经典的凸优化问题和对应的维基百科链接,在此总结一下:

 

Least squares(最小二乘法,常用,目标:线性关系;限制条件:线性关系)

 

Convex quadratic minimization with linear constraints(线性约束条件下的二次规划问题,常用,目标:平方关系;限制条件:线性关系)

 

Linear programming(线性规划)

 

Quadratic minimization with convex quadratic constraints

 

Conic optimization

 

Geometric programming

 

Second order cone programming

 

Semidefinite programming

 

Entropy maximization with appropriate constraints

 

四. 非凸优化问题的优化

 

在实际的业务应用场景中 ,我们定义出的目标函数很可能是非凸函数,非凸函数不仅可能存在很多局部最优解,对我们寻找全局最优解造成了很大的困扰,甚至有些优化方法论的复杂度非常高,可能O(P^N)这样的NP hard问题,这样的问题我们是没有办法很好进行优化的,因此我们在寻找优化方法论时,一定要选择更合理的方法论。很多非凸优化问题可以转化(并非是等价的)为凸优化问题,并给出问题的近似解。

 

松弛(Relaxation)

 

通过对问题限制条件的松弛,可以将原问题等价为凸优化问题。注:松弛原问题,只能得到一个可行域更大的问题,如果原问题是求最小,则松弛后的问题的最优值一定小于等于原问题的最优值,这也是一种给出下界的方法。松弛不仅仅用于整数约束,只要利于将定义域非凸变为凸集即可。

 

说起来可能比较抽象,我们通过下面的Set cover Problem来详细说明一下

 

Set cover Problem

 

 

优化方法:

 

 

 

松弛(Relaxation)的问题点

 

通过上面Set cover Problem中通过relaxation的方式求解参数,我们不难发现,其实通过对问题的转化,我们虽然能够快速对问题求解了,但是我们求出来的最优解与原问题的最优解可能是相等,也可能有一定的误差的,所以通过relaxation,我们需要证明relaxation得出的最优解和原问题的最优解的误差范围。

 

当我们拿到一个业务问题,一定需要按照算法思维那一节做,先将问题转换为一个严谨的数学问题,判断我们写出的目标函数的凹凸性,如果目标函数非凸,我们需要对问题的限制条件做一些转化,进而求出转化后问题的近似解,并证明其与原问题的误差范围。如果是凸函数,我们需要选择相应的优化方法论进行优化,因为优化问题是机器学习算法中的核心部分。

 

以上是对凸优化的方法论的一些总结与梳理,不得不说,凸优化是一个很深奥也很大的领域,并且通过一些非凸函数的优化方法论,也能感受出如果要严格解决一个数学问题,步骤是很严谨的,文中的观点如果有错误的地方,还请各路大神不吝赐教。

 

参考:

 

贪心学院 – 做在线教育领域的MIT, 立志于培养最顶级的工程师,www.greedyai.com

 

www2.imm.dtu.dk/pubdb/v

 

en.wikipedia.org/wiki/C

 

原文来自学员知乎作业 :

 

https://zhuanlan.zhihu.com/p/55295699

Be First to Comment

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注