Press "Enter" to skip to content

轻松掌握深度学习的核心-误差反向传播法

24.1 链式法则

 

假设z=f(t)

 

t=g(y)

 

则,根据复合函数的求导规则(即链式法则),可得:

24.1.1 计算图的方向传播

 

反向传播的计算顺序是将信号E乘以节点的局部导数(∂y/∂x),然后将结果传递给下一个节点。

 

24.1.2 链式法则

 

如果某个函数为复合函数,则该复合函数的导数可以用构成复合函数的各个函数的导数的乘积表示。

 

24.1.3 链式法则和计算图

 

 

反向传播是上游传过来的导数乘以本节点导数。

 

24.2 反向传播

 

反向传播是上游传过来的导数乘以本节点对应输入的导数。

 

24.2.1 加法节点的反向传播

 

 

代码实现如下

 

class AddLayer:
    def __init__(self):
        pass
    def forward(self,x,y):
        return x+y
    def backward(self,dout):
        dx=dout*1
        dy=dout*1
        return dx,dy

 

24.2.2 乘法法节点的反向传播

 

 

class MultiLayer:
    def __init__(self):
        self.x=None
        self.y=None
    def forward(self,x,y):
        self.x=x
        self.y=y
        return x*y
    def backward(self,dout):
        dx=dout*self.y
        dy=dout*self.x
        return dx,dy

 

24.2.3 激活函数层的反向传播

 

 

24.3 激活函数层的反向传播

 

24.3.1 ReLU激活函数

 

 

class ReLu:
    def __init__(self):
        self.mask=None
      
    def forward(self,x):
        self.mask=(x<=0)  #把x中不大于0的置为True,否则为False。
        out=x.copy()
        #使不大于0的设置为0,其它不变。
        out[self.mask]=0        
        return out
    def backward(self,dout):
        dout[self.mask]=0
        dx=dout
        return dx

 

24.3.2 Sigmoid激活函数

根据导数的链式规则,上游的值乘以本节点输出对输入的导数.

 

代码实现

 

class sigmoid:
    def __init__(self):
        self.out=None
    def forward(self,x):
        out=1/(1+np.exp(-x))
        self.out=out
        return out
    def backward(self,dout):
        dx=dout*(1.0-self.out)*self.out
        return dx

 

24.4 Affine/softmax层的反向传播

DY=np.array([[1,2,3],[4,5,6]])

 

dB=np.sum(DY,axis=0)

 

Affine层的代码实现

 

class Affine:
    def __init__(self,W,B):
        self.W=W
        self.B=B
        self.X=None
        self.dW=None
        self.dB=None
    def forward(self,X):
        self.X=X
        out=np.dot(X,self.W)+self.B
        return out
    def backward(self,dout):
        dX=np.dot(dout,self.W.T)
        self.dW=np.dot(self.X.T,dout)
        self.dB=np.sum(dout,axis=0)
        return dx

 

24.4.1 Softmax-with loss 层

 

输入一张手写5的图片,经过多层(这里假设为2层)神经网络转换后,对输出10个节点,在各个输出节点的得分或概率是不同的,其中对应标签为5的节点(转换为one

 

-hot后为[0,0,0,0,1,0,0,0,0],得分或概率最大。

 

 

我们看一下带softmax及loss的反向传播,如何计算梯度。以下为示意图。

 

 

代码实现

 

class softmaxwithloss:
    def __init__(self):
        self.loss=None
        self.y=None
        self.t=None
    def forward(self,x,t):
        self.y=softmax(x)
        self.t=t
        self.loss=cross_entropy_error(self.y,self.t)
        return self.loss
    def backward(self,dout=1):
        #如果是批处理,需要除以批量数据
        batch_size=self.t.shape[0]
        dx=(self.y-self.t)/batch_size
        return dx

 

24.5 损失反向传播法的实现

 

24.5.1 神经网络学习的基本步骤

 

利用随机梯度下降法,求梯度并更新权重和偏置参数,整个过程是个循环过程。

 

步骤1

 

从训练数据中随机选择一部分数据

 

步骤2

 

构建网络,利用前向传播,求出输出值。然后利用输出值与目标值得到损失函数,利用损失函数,利用反向传播方法,求各参数的梯度。

 

步骤3

 

将权重参数沿梯度方向进行微小更新

 

步骤4

 

重复以上1、2、3步骤

 

24.5.2 神经网络学习的反向传播法的实现

 

神经网络结构图如下

 

 

下面用代码实现

 

1)概述

 

为定义和保存以上神经网络架构,需要先定义几个实例变量:

 

保存权重参数的字典型变量params。

 

保存各层的信息的顺序字典layers,这里的顺序是插入数据的先后顺序。

 

神经网络的最后一层lastlayer

 

除了以上三个实例变量,还需要定义一些方法

 

构造函数,以初始化变量和权重等

 

预测方法,根据神经网络各层的前向传播得到最后的输出值

 

损失函数,根据输出值与目标值,得到交叉熵作为衡量两个分布的距离。

 

评估指标,这里使用精度来衡量模型性能

 

最后就是计算梯度,这里使用反向传播方法的得到,具体是利用导数的链式法则,从后往前,获取各层的梯度作为前层梯度往前传递(往输入端)

 

当然,这里需要先定义好各层类,各类中各层的权重参数、包括前向传播结果,反向传播的梯度等。

 

2)定义各层类

 

①softmax 函数及Sigmoid类

 

def softmax(x):
    if x.ndim == 2:
        x = x.T
        x = x - np.max(x, axis=0)
        y = np.exp(x) / np.sum(np.exp(x), axis=0)
        return y.T 
 
    x = x - np.max(x) #防止出现溢出情况
    return np.exp(x) / np.sum(np.exp(x))
 
class Sigmoid:
    def __init__(self):
        self.out=None
        
    def forward(self,x):
        self.out=1 / (1 + np.exp(-x))
        return self.out
    
    def backward(self,dout):
        dx=dout*(1.0 -self.out) * self.out
        return dx
 
class Relu:
    def __init__(self):
        self.mask = None
 
    def forward(self, x):
        self.mask = (x <= 0)
        out = x.copy()
        out[self.mask] = 0
 
        return out
 
    def backward(self, dout):
        dout[self.mask] = 0
        dx = dout
 
        return dx

 

②Affine类或称为sumweigt

 

class Affine:
    def __init__(self, W, b):
        self.W =W
        self.b = b
        
        self.x = None
        self.original_x_shape = None
        # 权重和偏置参数的导数
        self.dW = None
        self.db = None
 
    def forward(self, x):
        # 对应张量
        self.original_x_shape = x.shape
        x = x.reshape(x.shape[0], -1)
        self.x = x
 
        out = np.dot(self.x, self.W) + self.b
 
        return out
 
    def backward(self, dout):
        dx = np.dot(dout, self.W.T)
        self.dW = np.dot(self.x.T, dout)
        self.db = np.sum(dout, axis=0)
        
        dx = dx.reshape(*self.original_x_shape)  # 还原输入数据的形状(对应张量)
        return dx

 

③最后一层

 

class SoftmaxWithLoss:
    def __init__(self):
        self.loss = None
        self.y = None # softmax的输出
        self.t = None # 监督数据
 
    def forward(self, x, t):
        self.t = t
        self.y = softmax(x)
        self.loss = cross_entropy_error(self.y, self.t)
        
        return self.loss
 
    def backward(self, dout=1):
        batch_size = self.t.shape[0]
        if self.t.size == self.y.size: # 监督数据是one-hot-vector的情况
            dx = (self.y - self.t) / batch_size
        else:
            dx = self.y.copy()
            dx[np.arange(batch_size), self.t] -= 1
            dx = dx / batch_size
        
        return dx

 

3)定义损失函数

 

def cross_entropy_error(y, t):
    if y.ndim == 1:
        t = t.reshape(1, t.size)
        y = y.reshape(1, y.size)
        
    # 如果t为one-hot格式,把它转换为数字格式
    if t.size == y.size:
        t = t.argmax(axis=1)
             
    batch_size = y.shape[0]
    return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-8)) / batch_size

 

4)定义神经网络类

 

import numpy as np
from collections import OrderedDict
 
 
class TwoLayerNet:
 
    def __init__(self, input_size, hidden_size,output_size, weight_init_std = 0.01):
        # 初始化权重
        self.params = {}
        self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
        self.params['b1'] = np.zeros(hidden_size)
        self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size) 
        self.params['b2'] = np.zeros(output_size)
 
        # 生成层
        self.layers = OrderedDict()
        self.layers['Affine1'] = Affine(self.params['W1'], self.params['b1'])
        #self.layers['Sigmoid1'] = Sigmoid()
        self.layers['Relu1'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W2'], self.params['b2'])
 
        self.lastLayer = SoftmaxWithLoss()
        
    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)
        
        return x
 
 
    
        
    # x:输入数据, t:监督数据
    def loss(self, x, t):
        y = self.predict(x)
        return self.lastLayer.forward(y, t)
    
    
    def accuracy(self, x, t):
        y = self.predict(x)
        y = np.argmax(y, axis=1)
        #print("预测值",y[0],y.shape)
        
        if t.ndim != 1: 
            t = np.argmax(t, axis=1)
        accuracy = np.sum(y == t) / float(x.shape[0])
        return accuracy
        
    # x:输入数据, t:监督数据
    def numerical_gradient(self, x, t):
        loss_W = lambda W: self.loss(x, t)
        
        grads = {}
        grads['W1'] = numerical_gradient(loss_W, self.params['W1'])
        grads['b1'] = numerical_gradient(loss_W, self.params['b1'])
        grads['W2'] = numerical_gradient(loss_W, self.params['W2'])
        grads['b2'] = numerical_gradient(loss_W, self.params['b2'])
        
        return grads
        
    def gradient(self, x, t):
        # forward
        self.loss(x, t)
 
        # backward
        dout = 1
        dout = self.lastLayer.backward(dout)
        
        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)
 
        # 用一个字典记录各参数(权重和偏置)的梯度
        grads = {}
        grads['W1'], grads['b1'] = self.layers['Affine1'].dW, self.layers['Affine1'].db
        grads['W2'], grads['b2'] = self.layers['Affine2'].dW, self.layers['Affine2'].db
 
        return grads

 

5)使用误差反向传播法训练模型

 

import numpy as np
 
import matplotlib.pyplot as plt
 
# 读入数据
 
(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, one_hot_label=True)
 
network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10)
 
iters_num = 20000  # 适当设定循环的次数
 
train_size = x_train.shape[0]
 
batch_size = 100
 
learning_rate = 0.1
 
train_loss_list = []
 
train_acc_list = []
 
test_acc_list = []
 
iter_per_epoch = max(train_size / batch_size, 1)
 
for i in range(iters_num):
 
   batch_mask = np.random.choice(train_size, batch_size)
 
   x_batch = x_train[batch_mask]
 
   t_batch = t_train[batch_mask]
 
   # 计算梯度
 
   #grad = network.numerical_gradient(x_batch, t_batch)
 
   grad = network.gradient(x_batch, t_batch)
   
   
 
   for key in ('W1', 'b1', 'W2', 'b2'):
 
       network.params[key] -= learning_rate * grad[key]
 
   loss = network.loss(x_batch, t_batch)
 
   train_loss_list.append(loss)
 
   if i % iter_per_epoch == 0:
       # 更新
       if i%5000==0:
           learning_rate*=0.9
 
       # 更新参数
       print(learning_rate)
 
       train_acc = network.accuracy(x_train, t_train)
 
       test_acc = network.accuracy(x_test, t_test)
 
       train_acc_list.append(train_acc)
 
       test_acc_list.append(test_acc)
 
       print("train acc, test acc | " + str(train_acc) + ", " + str(test_acc))
 
# 绘制图形
 
markers = {'train': 'o', 'test': 's'}
 
x = np.arange(len(train_acc_list))
 
plt.plot(x, train_acc_list, label='train acc')
 
plt.plot(x, test_acc_list, label='test acc', linestyle='--')
 
plt.xlabel("epochs")
 
plt.ylabel("accuracy")
 
plt.ylim(0, 1.0)
 
plt.legend(loc='lower right')
 
plt.show()

 

.09000000000000001

 

train acc, test acc | 0.9837833333333333, 0.9724

 

0.09000000000000001

 

train acc, test acc | 0.9842666666666666, 0.9722

 

0.08100000000000002

 

train acc, test acc | 0.98475, 0.9716

 

0.08100000000000002

 

train acc, test acc | 0.9853166666666666, 0.9733

 

0.08100000000000002

 

train acc, test acc | 0.9859666666666667, 0.9726

 

0.08100000000000002

 

train acc, test acc | 0.9861166666666666, 0.9707

 

0.08100000000000002

 

train acc, test acc | 0.9873, 0.9737

 

0.08100000000000002

 

train acc, test acc | 0.9873833333333333, 0.9744

 

0.08100000000000002

 

train acc, test acc | 0.9881, 0.973

 

0.08100000000000002

 

train acc, test acc | 0.9886666666666667, 0.9747

 

0.08100000000000002

 

train acc, test acc | 0.9888833333333333, 0.9743

 

 

6)利用各种算法对MNIST数据集的影响

 

def smooth_curve(x):
    """用于使损失函数的图形变圆滑
    参考:http://glowingpython.blogspot.jp/2012/02/convolution-with-numpy.html
    """
    window_len = 11
    s = np.r_[x[window_len-1:0:-1], x, x[-1:-window_len:-1]]
    w = np.kaiser(window_len, 2)
    y = np.convolve(w/w.sum(), s, mode='valid')
    return y[5:len(y)-5]
 
 
 
import matplotlib.pyplot as plt
# 0:读入MNIST数据==========
(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True)
 
train_size = x_train.shape[0]
batch_size = 128
max_iterations = 2000
 
 
# 1:进行实验的设置==========
optimizers = {}
optimizers['SGD'] = SGD()
optimizers['Momentum'] = Momentum()
optimizers['AdaGrad'] = AdaGrad()
optimizers['Adam'] = Adam()
#optimizers['RMSprop'] = RMSprop()
 
networks = {}
train_loss = {}
for key in optimizers.keys():
    networks[key] = TwoLayerNet(
        input_size=784, hidden_size=100,
        output_size=10)
    train_loss[key] = []    
 
 
# 2:开始训练==========
for i in range(max_iterations):
    batch_mask = np.random.choice(train_size, batch_size)
    x_batch = x_train[batch_mask]
    t_batch = t_train[batch_mask]
    
    for key in optimizers.keys():
        grads = networks[key].gradient(x_batch, t_batch)
        optimizers[key].update(networks[key].params, grads)
    
        loss = networks[key].loss(x_batch, t_batch)
        train_loss[key].append(loss)
    
    if i % 100 == 0:
        print( "===========" + "iteration:" + str(i) + "===========")
        for key in optimizers.keys():
            loss = networks[key].loss(x_batch, t_batch)
            print(key + ":" + str(loss))
 
 
# 3.绘制图形==========
markers = {"SGD": "o", "Momentum": "x", "AdaGrad": "s", "Adam": "D"}
x = np.arange(max_iterations)
for key in optimizers.keys():
    plt.plot(x, smooth_curve(train_loss[key]), marker=markers[key], markevery=100, label=key)
plt.xlabel("iterations")
plt.ylabel("loss")
plt.ylim(0, 1)
plt.legend(loc='upper right')
plt.show()

 

Be First to Comment

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注