Press "Enter" to skip to content

神经网络中的激活函数介绍

 

激活函数(Activation Function)是神经元中非常重要的一部分,为了增强网络的表示能力和学习能力,通常具备了多种特性,本篇文章会介绍几种常用的激活函数。

人工神经元(Artifical Neuron)简称神经元(Neuron),是构成神经网络的基本单元,其主要是模拟生物神经元的结构和特性,接受一组输入信息并产出输出。

 

激活函数(Activation Function)

 

是神经元中非常重要的一部分,为了增强网络的表示能力和学习能力,激活函数需要具备以下几点性质:

 

连续并可导的非线性函数,可导的激活函数可以直接利用数值优化的方法来学习网络参数。

 

激活函数及其导函数要尽可能的简单,有利于提高网络计算效率。

 

激活函数的导函数的值域要在一个合适的区间内,不能太大也不能太小,否则会影响训练的效率和温度性。

 

Sigmoid函数

 

S型曲线函数,常见的Sigmoid函数有Logistic函数和tanh函数。

 

知识点:对于函数f(x),若x趋向于负无穷大,其导数f'(x)趋向于0,则称其为左饱和。若x趋向于正无穷大,其导数f'(x)趋向于0,则称其为右饱和。同时满足左右饱和时,称为两端饱和。

 

Logistic 函数

 

tanh函数

 

 

tanh函数可以看作是放大并平移的Logistic函数,其值域是(-1,1)。

 

 

tanh函数的输出是零中心化的(Zero-Centered),而Logistic函数的输出值恒大于0。非零中心化的输出会使得最后一层的神经元的输入发生位置偏移(Bias Shift),并进一步使得梯度下降的收敛速度变慢。

image

修正线性单元数

 

Rectified Linear Unit(ReLU)也叫rectifier函数,是目前深层神经网络中经常使用的激活函数。ReLU实际上是一个斜坡函数,定义为:

 

 

ReLU的优缺点:

 

优点

 

采用ReLU的神经元只需要进行加,乘,和,比较的操作,计算上更加高效。Sigmoid型激活函数会导致一个非稀疏的神经网络,而ReLU却具有很好的稀疏性,大约50%的神经元会处于激活状态。

 

在优化方面,由于Sigmoid型函数的两端饱和,ReLU函数为左饱和函数,且在x>0时导数为1,在一定程度上缓解了神经网络的梯度消失问题,加速梯度下降的收敛速度。

 

缺点

 

ReLU的输出是非零中心化的,给后一层的神经网络引入偏置偏移,会影响梯度下降的效率。此外ReLU神经元在训练时比较容易死亡。在训练时,如果参数在一次不恰当的更新后,第一个隐藏层中的某个ReLU神经元在所有的训练数据上都不能被激活,那幺这个神经元自身参数的梯度永远都会是0,在以后的训练过程中永远不能被激活。这种现象称为死亡ReLU问题(Dying ReLU Problem),并且也有kennel会发生在其他隐藏层。

 

在实际使用中,为了避免上述情况,有集中ReLU的变种也会被广泛使用。

 

带泄漏的ReLU

 

带泄漏的ReLU在输入x<0时,保持一个很小的梯度 lambda。这样当神经元非激活时也能又一个非零的梯度可以更新参数,避免永远不能被激活。带泄漏的ReLU的定义如下:

 

 

其中 gamma是一个很小的常数,比如0.01。当gamma < 1时,带泄漏的ReLU也可以写为:

 

 

相当于是一个比较简单的maxout单元。

 

带参数的ReLU

 

带参数的ReLU引入一个可学习的参数,不同神经元可以有不同的参数,对于第i个神经元,其PReLU的定义为:

 

 

其中γi为x≤0时函数的斜率。因此,PReLU是非饱和函数。如果γi =0,那 幺 PReLU 就退化为 ReLU。如果 γi 为一个很小的常数,则 PReLU 可以看作带 泄露的 ReLU。PReLU 可以允许不同神经元具有不同的参数,也可以一组神经 元共享一个参数。

 

ELU

 

指数线性单元(Exponential Linear Unit)是一个近似的零中心化的非线性函数,其定义为:

 

 

其中 γ ≥ 0是一个超参数,决定x ≤ 0时的饱和曲线,并调整输出均值在0附

 

近。

 

Softplus函数

 

Softplus函数可以看作是rectifier函数的平滑版本,其定义为:

 

 

Softplus函数及其导数刚好是Logistic函数。Softplus函数虽然也具有单侧抑制,宽兴奋边界的特征,却没有稀疏激活性。

 

下图为几种激活函数的示例:

激活函数对比

Swish函数

 

Swish函数是一种自门控(self-Gated)激活函数,其定义为:

 

 

其中 sigma(.)为logistic函数,beta为可学习的参数或一个固定超参数。sigma(.) 属于 (0,1)可以看做是一种软性的门控机构。当sigma(beta x)接近于1时,门处于“开”状态,激活函数的输出近似于x本身;当sigma(beta x)接近于0时,门的状态为“关”,激活函数的输出近似于0。

 

下图为Swish函数的示例:

image

当 beta=0时,Swish函数变成线性函数 x/2。当 beta=1时,Swish 函数在 x>0时近似线性,在x < 0时近似饱和,同时具有一定的非单调性。当beta趋向于正无穷大时, sigma(beta x)趋向于离散的0-1函数,Switch函数近似为ReLU函数。

 

因此Swish函数可以看作时线性函数和ReLU函数之间的非线性插值函数,其程度由参数beta控制。

 

Maxout单元

 

Maxout单元也是一种分段线性函数。Sigmoid型函数, ReLU等激活函数的输入是神经元的净输入z,是一个标量。而maxout单元的输入是上一层神经元的全部原始输入,是一个向量x=[x1;x2;…;x_d]。

 

每个maxout单元有K个权重向量w_k 属于 R^d 和偏置 b_k(1 <= k <= K)。对于输入x,可以得到K个净输入z_k,1 <= k <=K。

 

其中

 

 

为第k个权重向量。

 

Maxout单元的非线性函数定义为:

 

 

Maxout单元不单是净输入到输出之间的非线性映射,而是整体学习输入到输出之间的非线性映射关系。Maxout激活函数可以看作任意凸函数的分段线性近似,并且在有限的点上是不可微的。

 

在这浮躁的社会沉静,用心记录,用心学习!

Be First to Comment

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注