Press "Enter" to skip to content

看图轻松理解最小(大)堆

本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.

推出一个新系列,《看图轻松理解数据结构和算法》,主要使用图片来描述常见的数据结构和算法,轻松阅读并理解掌握。本系列包括各种堆、各种队列、各种列表、各种树、各种图、各种排序等等几十篇的样子。

 

(大)堆

 

最小(大)堆是一颗完全二叉树,该树中的某个节点的值总是不大于(不小于)其左右子节点的值。可以通过下图理解,另外,为什幺会使用数组来保存呢?因为利用完全二叉树的性质,我们可以通过数组来表示完全二叉树(数组下标与完全二叉树节点存在映射关系,比如父节点可以通过 Math.floor((index-1)/2) 来获取),从而简化了实现及开销,避免使用额外的指针来实现树结构。

最小(大)堆性质

树根节点的值是所有堆节点值中最小(大)值。
树中每个节点的子树也都是最小(大)堆。

最小(大)堆作用

 

最小(大)堆能保证堆顶元素为最小,而如果使用数组无法达到该效果。数组如果要访问最小值则需要遍历查找最小值,时间复杂度至少O(n)。而最小堆访问最小值时间复杂度为O(1),当然天底下没有免费的午餐,我们需要做额外的工作去维护最小(大)堆的结构,这也是需要复杂度花销的。

 

当然这也是最小(大)堆的优势,通过动态维护使得最小值的获取代价很小,实际上维护的时间复杂度为O(logN)。而数组则无法做到如此,如果数组想要维护顺序性则需要的复杂度至少为O(N)。这样来看最小(大)堆的优势就凸现出来了。

 

插入操作

 

为避免冗长累赘,我们这里只挑最小堆作为例子进行说明,最大堆的情况与最大堆相似。

 

现在分别插入 4 7 2 5 6 1 0 3 8 ,使用一个数组来保存最小堆,为了帮助理解,数组下方提供一个逻辑上的完全二叉树的结构,两者结合着更容易理解其中机制。首先插入4,

接着插入7,插入后检测到树符合最小堆要求,所以不改动。

继续插入2,插入后检测到不符合最小堆要求,父节点4大于右子节点2,

于是将它们对调。

继续插入5,插入后检测到不符合最小堆要求,父节点7大于左子节点5,

于是将它们对调。

继续插入6,插入后检测到树符合最小堆要求,所以不改动。

继续插入1,插入后检测到不符合最小堆要求,父节点4大于左子节点1,

于是将它们对调,

对调后继续检测到不符合最小堆要求,父节点2大于右子节点1,

继续将它们对调。

继续插入0,插入后检测到不符合最小堆要求,父节点2大于右子节点0,

于是将它们对调,

对调后继续检测到不符合最小堆要求,父节点1大于右子节点0,

继续将它们对调。

继续插入3,插入后检测到不符合最小堆要求,父节点7大于左子节点3,

于是将它们对调,

对调后继续检测到不符合最小堆要求,父节点5大于左子节点3,

继续将它们对调,然后符合最小堆要求,不必继续往上对调。

继续插入8,插入后检测到树符合最小堆要求,所以不改动。以上,完成所有元素的最小堆插入操作。

删除操作

 

删除操作其实就是删除最小值,即最小堆树中的根节点。主要是将树中最后一个节点替换到被删除的根节点,然后自顶向下递归调整使之符合最小堆要求。

 

删除根节点0,然后将树的最后一个节点8补到根节点上。

比较根节点的左右子节点,

因为右子节点1比较小,所以我们要进一步比较的是根节点8与右子节点1,

1小于8,于是对调。

继续比较现在节点8的左右子节点,

因为右子节点2比较小,所以我们要进一步比较的是根节点8与右子节点2,

2小于8,于是对调。

至此,完成最小值删除操作。

Be First to Comment

发表评论

电子邮件地址不会被公开。 必填项已用*标注