Press "Enter" to skip to content

【译】Effective TensorFlow Chapter3——范围以及何时使用它们

本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.

本文翻译自: 《Scopes and when to use them》
, 如有侵权请联系删除,仅限于学术交流,请勿商用。如有谬误,请联系指出。

 

TensorFlow中的变量和张量具有name属性,用于在符号图中标识它们。如果在创建变量或张量时未指定名称,TensorFlow会自动为您指定名称:

 

a = tf.constant(1)
print(a.name)  # prints "Const:0"
b = tf.Variable(1)
print(b.name)  # prints "Variable:0"

 

您可以通过显式指定来覆盖默认名称:

 

a = tf.constant(1, name="a")
print(a.name)  # prints "a:0"
b = tf.Variable(1, name="b")
print(b.name)  # prints "b:0"

 

TensorFlow引入了两个不同的上下文管理器来改变张量和变量的名称。第一个是 tf.name_scope

 

with tf.name_scope("scope"):
  a = tf.constant(1, name="a")
  print(a.name)  # prints "scope/a:0"
  b = tf.Variable(1, name="b")
  print(b.name)  # prints "scope/b:0"
  c = tf.get_variable(name="c", shape=[])
  print(c.name)  # prints "c:0"

 

请注意,有两种方法可以在TensorFlow中定义新变量,一是创建 tf.Variable
对象或是调用 tf.get_variable
方法。使用新名称调用 tf.get_variable
会导致创建新变量,但如果存在具有相同名称的变量,则会引发ValueError异常,告诉我们不允许重新声明变量。

 

tf.name_scope
影响使用 tf.Variable
创建的张量和变量的名称,但不影响使用 tf.get_variable
创建的变量。

 

tf.name_scope
不同, tf.variable_scope
也修改了使用 tf.get_variable
创建的变量的名称:

 

with tf.variable_scope("scope"):
  a = tf.constant(1, name="a")
  print(a.name)  # prints "scope/a:0"
  b = tf.Variable(1, name="b")
  print(b.name)  # prints "scope/b:0"
  c = tf.get_variable(name="c", shape=[])
  print(c.name)  # prints "scope/c:0"
with tf.variable_scope("scope"):
  a1 = tf.get_variable(name="a", shape=[])
  a2 = tf.get_variable(name="a", shape=[])  # Disallowed

 

但是,如果我们真的想要复用先前声明的变量呢?变量范围还提供了执行此操作的功能:

 

with tf.variable_scope("scope"):
  a1 = tf.get_variable(name="a", shape=[])
with tf.variable_scope("scope", reuse=True):
  a2 = tf.get_variable(name="a", shape=[])  # OK

 

这在使用内置神经网络层时变得很方便:

 

with tf.variable_scope('my_scope'):
  features1 = tf.layers.conv2d(image1, filters=32, kernel_size=3)
# Use the same convolution weights to process the second image:
with tf.variable_scope('my_scope', reuse=True):
  features2 = tf.layers.conv2d(image2, filters=32, kernel_size=3)

 

或者,您可以将 reuse
属性设置为 tf.AUTO_REUSE
,这种操作告诉TensorFlow如果不存在具有相同名称的变量,就创建新变量,否则就复用:

 

with tf.variable_scope("scope", reuse=tf.AUTO_REUSE):
  features1 = tf.layers.conv2d(image1, filters=32, kernel_size=3)
with tf.variable_scope("scope", reuse=tf.AUTO_REUSE):
  features2 = tf.layers.conv2d(image2, filters=32, kernel_size=3)

 

如果你想共享很多变量,跟踪定义新变量以及复用这些变量的时候可能很麻烦且容易出错。 tf.AUTO_REUSE
则简化了此任务,但增加了共享不应共享的变量的风险。TensorFlow模板是解决这一问题的另一种方法,它没有这种风险:

 

conv3x32 = tf.make_template("conv3x32", lambda x: tf.layers.conv2d(x, 32, 3))
features1 = conv3x32(image1)
features2 = conv3x32(image2)  # Will reuse the convolution weights.

 

您可以将任何功能转换为TensorFlow模板。在第一次调用模板时,在函数内部定义的变量会被声明,并且在连续调用中,它们将被自动复用。

Be First to Comment

发表评论

电子邮件地址不会被公开。 必填项已用*标注