Press "Enter" to skip to content

推理性能提升一倍,TensorFlow Feature Column性能优化实践

本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.

01

 

写在前面

 

在CTR(Click Through Rate)点击率预估的推荐算法场景,TensorFlow Feature Column被广泛应用到实践中。这一方面带来了模型特征处理的便利,另一方面也带来了一些线上推理服务的性能问题。为了优化推荐业务性能,提升线上服务效率,爱奇艺深度学习平台团队在实践中总结了一些性能优化方法。

 

经过这些优化,推荐业务的线上推理服务性能效率可以提升一倍以上,p99延迟降低达到50%以上。

 

02

 

背景介绍

 

Feature Column是TensorFlow提供的用于处理结构化数据的工具,是将样本特征映射到用于训练模型特征的桥梁。它提供了多种特征处理方法,让算法人员可以很容易将各种原始特征转换为模型的输入,来进行模型实验。

 

 

如上图所示,所有Feature Column都源自FeatureColumn类,并继承了三个子类CategoricalColumn、DenseColumn和SequenceDenseColumn,分别对应 稀疏特征 、 稠密特征 、 序列稠密特征 。算法人员可以按照样本特征的类型找到对应的接口直接适配。

 

而且 Feature Column 和 TF Estimator 接口有很好的集成,通过定义好对应的特征输入就可以直接在预定义的 Estimator 模型中使用。TF Estimator 在推荐算法的使用非常普遍,特别是它封装了分布式训练的功能。

 

下图是一个使用Feature Column处理特征,进入到 Estimator DNN Classifier的示例:

 

 

虽然Feature Column使用起来很方便,模型代码编写比较快,但是在爱奇艺推荐类业务的线上服务落地过程中,一些性能问题逐渐凸显,下面将逐个介绍我们在实际中碰到的一些问题,以及如何优化。

 

03

 

整型特征哈希优化

 

推荐类模型通常都会将ID类特征哈希到一定数量的bucket 分桶,然后转换成 Embedding再作为神经网络的输入,比如视频类ID特征,用户ID特征,商品ID特征等。示例如下:

 

 

在` categorical_column_with_hash_bucket `的文档[2]里面说到:对于String类型的输入,会执行`output_id = Hash(input_feature_string) % bucket_size`做哈希操作,而对于整数类型的输入会先转成String类型然后再进行同样的哈希操作。通过查看源代码[3]可以看到这样的逻辑:

 

 

在推荐业务中,通常这类ID都是已经过某种方式的哈希,形成64bit的整型特征放到样本里面,因此必然要执行整型转化成String的操作。但是在TensorFlow 的 Timeline中可以看到函数`as_string`所对应的TF内部的`AsString` OP其实是一个比较耗时的操作,经过分析对比发现`AsString` OP的耗时通常是后面的哈希操作的3倍以上,如下图所示:

 

 

进一步分析`AsString` OP内部的代码,可以发现这个OP内部还涉及到了内存分配和拷贝操作,因此比纯哈希计算慢就可以理解了。

 

很自然,团队考虑去掉相关操作来做优化,因此专门编写了一个给整型做哈希的函数来做优化,示例代码如下:

 

 

经过这样做区分类型的哈希方式,完全优化了原先耗时长的类型转换操作。这里需要注意的是新加的哈希函数对应的新OP同样需要加到 TF Serving 中。

 

04

 

定长特征转换优化

 

定长特征是指使用接口`tf.io.FixedLenFeature`来解析的特征,比如用户的性别,年龄等,这类特征的长度通常都是定长的,并且固定为 1 维或多维。这类特征经过接口`tf.io.parse_example` 解析成 Dense Tensor,然后经过Feature Column处理,再进入到模型的输入层。常见的代码示例如下:

 

 

以上面的代码为例子,举例解析一下 TensorFlow 内部的Tensor 转换逻辑。如下图所示,两个样本user_name分别为bob和wanda,经过样本解析成shape为2的Dense Tensor,然后经过`categorical_column_with_vocabulary_list`转换,查找词表分别转成0和2,再经过`indicator_column`转换成One hot编码的Dense输入。

 

 

从上面的样本处理来看没有什幺问题,然后再来看一下Feature Column代码内部的转换处理逻辑:

 

 

如上图所示,在代码中Vocabulary Categorical Column 会先去除掉一些非法值,然后把输入的Dense Tensor 转换成 Sparse Tensor,在Indicator Column中会再次把Tensor从Sparse转成Dense,最后转成需要的One Hot Tensor。

 

先来思考一下上面两个转换操作的目的,一方面是为了去除样本数据中一些异常的值,另外一方面是这样的处理其实是同时兼顾了输入是 Sparse Tensor 的情况,如果输入是Spare Tensor就直接做Vocabulary词表查找,然后再转成Dense Tensor。这样转换虽然达到代码复用的作用,但是在性能上却有损失。如果能直接将原始的Input Tensor转换成One Hot Tensor,就可以省去两个转换过程,而且Sparse Tensor 和Dense Tensor之间的转换其实是非常耗时的操作。

 

再回到定长特征的原始性质,对于这类定长特征来讲,在样本处理的时候如果没有值,会被填充成默认值,而且在生成样本的时候都会被保证不会出现有空值或者 -1的情况,因此异常值的处理其实是可以被省略的。最后优化后的内部转换逻辑如下图,省去了两次Sparse Tensor 和Dense Tensor之间的转换。

 

 

除了上面的Vocabulary Categorical Column,还有别的类似Feature Column也有同样的问题,因此针对这类特征,平台专门开发了一套优化的Feature Column接口提供给业务使用,优化性能效果还不错。

 

05

 

用户特征去重优化

 

推荐类算法模型都有个很典型的特点,那就是模型中会包含用户侧特征和要推荐的Item侧特征,比如视频的特征、商品的特征等。模型在线上服务部署的时候,会给一个用户推荐多个视频或商品,模型会返回这多个视频或商品的打分,然后按照打分的大小推荐给用户。由于是给单个用户做推荐,这个时候该用户的特征会根据推荐Item的数量重复多次,再发送给模型。如下是一个典型的推荐算法排序模型线上推理的示意图:

 

 

图示的模型输入有3个User特征,3个Item特征,假定在对某个用户做推荐,该用户的3个特征分别对应为u1,u2和u3。这时要对两个不同的Item做推荐评分请求,也就是一个请求里面有两个Item,这两个Item分别为I1和I2,这两个Item分别有三个特征,I1对应I11,I12,I13,以此类推,这样构成一个batch size为2的推理请求。从图中可以看到,因为是给同一个用户推荐两个不同的Item,Item侧的特征是不同的,但是用户的特征被重复了两次。

 

上面的例子只以2个Item为例,但是实际线上的服务一个推理请求会带100个Item甚至更多,因此用户的特征也会被重复100次甚至更多,重复的用户特征不仅增加了传输的带宽,而且增加了特征处理时的计算量,因此业务非常希望能解决这个问题。

 

这个问题的本源要从TensorFlow 的模型训练代码说起。TensorFlow 训练时的每一条样本是某个用户对某个Item的行为,然后经过shuffle和batch后进入到训练模型,这时候一个batch里面的数据肯定包含了多个用户行为的样本,这个和线上推理服务的输入数据格式是完全不同的。

 

如何解决这个问题?最简单的想法,如果在线上服务就只发送一条用户特征会怎幺样?快速的尝试就可以知道特征数据进入到模型输入层的时候会 concat失败。这是因为Item特征的batch size是多个,而用户特征的batch size只有1,示例如下:

 

 

为了解决concat失败的问题,单纯先从模型的角度来看,可以考虑在进入到输入层之前把用户特征还原到和Item特征同样的batch size,如下图所示。

 

 

显然这个从数学模型上是可行的,接下来就是怎幺在TensorFlow 的代码里面实现这个想法。这里需要注意的是复制的操作只能在线上服务的模型里面,不能在训练的模型里面。

 

目前TF Estimator 接口在推荐类算法的应用比较常见,而Estimator 接口提供了很好的模型区分方法,通过判断ModeKeys为`tf.estimator.ModeKeys.PREDICT`时是线上的服务模型,ModeKeys为`tf.estimator.ModeKeys.TRAIN`时是训练模型,下面是示例代码:

 

 

在实际的模型上,需要将User和Item的feature column区分开来分别传入,这个对原来的模型代码改动比较大,batch size的获取可以通过判断Item特征的长度来获取,这里不再赘述。

 

在实际的上线过程中,团队经历了两个阶段,第一个阶段是只对算法模型代码做修改,在处理用户特征时只取第一维,但是实际发送的推理请求还是会把用户特征重复多次;第二个阶段才把发送的推荐请求优化成只发送一份用户特征,这个时候模型代码不需要再做修改,已经自动适配。

 

 

如上图所示,第一阶段的时候用户特征的输入还是重复多次,在模型中,对用户特征只取第一维再进行特征处理,示例代码如下:

 

 

上面的模型代码可以同时适配推理请求发送重复的用户特征,或者只发送一条用户特征。因此在第二阶段的时候,不需要再修改模型代码,只需要优化发送推理请求的引擎侧代码。

 

经过这样的优化,线上推理服务不需要重复发送用户特征,不仅节约了带宽,而且减少了序列化的消耗。对一个 batch 中的用户特征只做一份数据的Feature Column转换,然后做复制操作,复制消耗的时间远远小于转换的时间。

 

这里其实还可以做进一步的优化,将复制操作延后到第一层神经网络的矩阵乘后面,这样可以减少第一个矩阵乘的部分计算消耗。如果用户特征的维度占比比较高,优化的效果会比较明显。

 

06

 

总结

 

本文介绍了爱奇艺深度学习平台在实践过程中总结的一些TensorFlow Feature Column优化。经过这些优化,线上的推理服务性能效率提升一倍以上,p99延迟降低达到50%以上。而且相比较于做op fuse,模型图修改等优化,这些优化在业务实际中也比较容易去落地。

 

最后,我们还是要肯定TensorFlow Feature Column给推荐类算法带来的特征处理便利性,它将整个特征的处理抽象出来,算法只要稍微适配一下样本特征就可以很快的做迭代和实验。

 

参考文献

 

1. https://www.tensorflow.org/tutorials/structured_data/feature_columns

 

2. https://www.tensorflow.org/api_docs/python/tf/feature_column

 

3. https://github.com/tensorflow/tensorflow

 

Be First to Comment

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注