#### 1. 因果推断的数学基础

(1) 非依从性 ：患者并没有按照原来安排的治疗方案进行治疗；

(2) 缺失数据 ：没有观察到结局 （结局有定义） ；

(3) 死亡截断 ：在收集到结局之前患者死亡 （结局无定义） 。

2. 非标准条件下的因果推断 之非依从性

(1) 可忽略性假设，即两种潜在结果和分配方案独立；

(2) 单调性假设，即D i (1)≥D i (0)，不存在d组；

(3) a组和d组的排他性约束假设，即a组和d组的两种潜在结果相等。

3. 非标准条件下的 因果推断 之死亡截断

#### 参考文献

[1] Keisuke, H. , Imbens, G. W. , Rubin, D. B. , & Xiao-Hua, Z. . (2000). Assessing the effect of an influenza vaccine in an encouragement design. Biostatistics.

[2] Hua, C. , Geng, Z. , Zhou, X. H. , Small, D. S. , & Jing, C. . (2009). Identifiability and estimation of causal effects in randomized trials with noncompliance and completely nonignorable missing data. Biometrics.

[3] Frangakis, C. E. , Rubin, D. B. , & Zhou, X. . (2002). Clustered encouragement designs with individual noncompliance: bayesian inference with randomization, and application to advance directive forms. Biostatistics.

[4] Taylor, L. , & Zhou, X. H. . (2010). Multiple imputation methods for treatment noncompliance and nonresponse in randomized clinical trials. Biometrics.

[5] Taylor, L. , & Zhou, X. H. . (2011). Methods for clustered encouragement design studies with noncompliance and missing data. Biostatistics.

[6] Qiu, Y. , Tao, J. , & Zhou, X. H. . (2021). Inference of heterogeneous treatment effects using observational data with high-dimensional covariates. Journal of the Royal Statistical Society: Series B.

[7] Ding, P. , Geng, Z. , Yan, W. , & Zhou, X. H. (2011). Identifiability and estimation of causal effects by principal stratification with outcomes truncated by death. Journal of the American Statistical Association.

[8] Wang, L. , Zhou, X. H. , & Richardson, T. S. . (2016). Identification and estimation of causal effects with outcomes truncated by death. Biometrika.

[9] Wang, L. , Richardson, T. S. , & Zhou, X. H. . (2017). Causal analysis of ordinal treatments and binary outcomes under truncation by death. Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[10] Deng, Y. , & Zhou, X. H. . (2021). Caution About Truncation-By-Death in Clinical Trial Statistical Analysis: A Lesson from Remdesivir. China CDC Weekly.

[11] Zheng, C. , & Zhou, X. H. . (2015). Causal mediation analysis in the multilevel intervention and multicomponent mediator case. Journal of the Royal Statistical Society Series B, 77.

[12] Li, W. , Geng, Z. , & Zhou, X. H. . (2021). Causal mediation analysis with sure outcomes of random events model. Statistics in Medicine.

[13] 韩开山, 周晓华, & 刘宝芳. (2017). 结局变量为二值时利用cste曲线选择最优治疗方案. 中国科学:数学.

[14] Zhou, X. H. , & Ma, Y. B. . (2012). Bate curve in assessment of clinical utility of predictive biomarkers. Science China Mathematics.

[15] Ma, Y. , & Zhou, X. H. . (2017). Treatment selection in a randomized clinical trial via covariate-specific treatment effect curves. Statistical Methods in Medical Research.

[16] Guo, W. , Zhou, X. H., & Ma, S. (2020). Estimation of optimal individualized treatment rules using a covariate-specific treatment effect curve with high-dimensional covariates. Journal of the American Statistical Association.

[17] https://cran.r-project.org/web/packages/CSTE/index.html