Press "Enter" to skip to content

R基于密度的噪声应用聚类DBScan

本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.

基于密度的噪声应用聚类 (  DBScan ) 是一种无监督学习非线性算法。它确实使用了密度可达性和密度连通性的思想。数据被划分为具有相似特征或集群的组,但不需要事先指定这些组的数量。集群被定义为密集连接点的最大集合。它在带有噪声的空间数据库中发现任意形状的簇。

 

理论

 

在 DBScan 聚类中,对维度距离曲线的依赖更多。算法如下:

 

 

 

    1. 随机选择一个点 p 。

 

    1. 根据邻域的最大半径 (EPS) 和 eps 邻域内的最小点数 (Min Pts),检索从 p 密度可达的所有点。

 

    1. 如果邻域中的点数大于 Min Pts,则 p 是核心点。

 

    1. 对于 p 个核心点,形成一个集群。如果 p 不是核心点,则将其标记为噪声/异常值并移至下一个点。

 

    1. 继续该过程,直到处理完所有点。

 

 

DBScan 集群对顺序不敏感。

 

数据集

 

Iris 数据集包含来自 3 种鸢尾属植物(Iris setosa、Iris virginica、Iris versicolor)中的每一种的 50 个样本,以及由英国统计学家和生物学家 Ronald Fisher 在 1936 年的论文 The use of multiple measures in taxonomic questions 中引入的多元数据集。从每个样本测量四个特征,即萼片和花瓣的长度和宽度,基于这四个特征的组合,Fisher 开发了一个线性判别模型来区分物种。

# Loading data

data(iris)

 

# Structure 

str (iris)

 

对数据集执行 DBScan

 

在包含 11 个人和 6 个变量或属性的数据集上使用 DBScan 聚类算法

# Installing Packages

install.packages( "fpc" )

 

# Loading package

library(fpc)

 

# Remove label form dataset

iris_1 < - iris[ - 5 ]

 

# Fitting DBScan clustering Model 

# to training dataset

set .seed( 220 # Setting seed

Dbscan_cl < - dbscan(iris_1, eps = 0.45 , MinPts = 5 )

Dbscan_cl

 

# Checking cluster

Dbscan_cl$cluster

 

# Table

table(Dbscan_cl$cluster, iris$Species)

 

# Plotting Cluster

plot(Dbscan_cl, iris_1, main = "DBScan" )

plot(Dbscan_cl, iris_1, main = "Petal Width vs Sepal Length" )

输出:

模型 dbscan_cl:

在模型中,有 150 个点,最小点数为 5,eps 为 0.5。

集群识别:

显示了模型中的集群。

绘图集群:

DBScan 簇是用 Sepal.Length、Sepal.Width、Petal.Length、Petal.Width 绘制的。

该图绘制在 Petal.Width 和 Sepal.Length 之间。

 

因此,DBScan 聚类算法也可以形成不寻常的形状,这对于在行业中查找非线性形状的集群很有用。

Be First to Comment

发表回复

您的电子邮箱地址不会被公开。