本课程是中国大学慕课《机器学习》的“决策树”章节的课后代码。
课程地址:
https://www.icourse163.org/course/WZU-1464096179
课程完整代码:
https://github.com/fengdu78/WZU-machine-learning-course
代码修改并注释:黄海广,[email protected]
机器学习练习7 决策树
代码修改并注释:黄海广,[email protected]
1.分类决策树模型是表示基于特征对实例进行分类的树形结构。决策树可以转换成一个 if-then 规则的集合,也可以看作是定义在特征空间划分上的类的条件概率分布。
2.决策树学习旨在构建一个与训练数据拟合很好,并且复杂度小的决策树。因为从可能的决策树中直接选取最优决策树是NP完全问题。现实中采用启发式方法学习次优的决策树。
决策树学习算法包括3部分:特征选择、树的生成和树的剪枝。常用的算法有ID3、 C4.5和CART。
3.特征选择的目的在于选取对训练数据能够分类的特征。特征选择的关键是其准则。常用的准则如下:
(1)样本集合对特征的信息增益(ID3)
其中,是数据集的熵,是数据集的熵,是数据集对特征的条件熵。是中特征取第个值的样本子集,是中属于第类的样本子集。是特征取 值的个数,是类的个数。
(2)样本集合对特征的信息增益比(C4.5)
其中,是信息增益,是数据集的熵。
(3)样本集合的基尼指数(CART)
特征条件下集合的基尼指数:
4.决策树的生成。通常使用信息增益最大、信息增益比最大或基尼指数最小作为特征选择的准则。决策树的生成往往通过计算信息增益或其他指标,从根结点开始,递归地产生决策树。这相当于用信息增益或其他准则不断地选取局部最优的特征,或将训练集分割为能够基本正确分类的子集。
5.决策树的剪枝。由于生成的决策树存在过拟合问题,需要对它进行剪枝,以简化学到的决策树。决策树的剪枝,往往从已生成的树上剪掉一些叶结点或叶结点以上的子树,并将其父结点或根结点作为新的叶结点,从而简化生成的决策树。
import numpy as np import pandas as pd import math from math import log
创建数据
def create_data(): datasets = [['青年', '否', '否', '一般', '否'], ['青年', '否', '否', '好', '否'], ['青年', '是', '否', '好', '是'], ['青年', '是', '是', '一般', '是'], ['青年', '否', '否', '一般', '否'], ['中年', '否', '否', '一般', '否'], ['中年', '否', '否', '好', '否'], ['中年', '是', '是', '好', '是'], ['中年', '否', '是', '非常好', '是'], ['中年', '否', '是', '非常好', '是'], ['老年', '否', '是', '非常好', '是'], ['老年', '否', '是', '好', '是'], ['老年', '是', '否', '好', '是'], ['老年', '是', '否', '非常好', '是'], ['老年', '否', '否', '一般', '否'], ] labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别'] # 返回数据集和每个维度的名称 return datasets, labels
datasets, labels = create_data()
train_data = pd.DataFrame(datasets, columns=labels)
train_data
年龄 | 有工作 | 有自己的房子 | 信贷情况 | 类别 | |
---|---|---|---|---|---|
0 | 青年 | 否 | 否 | 一般 | 否 |
1 | 青年 | 否 | 否 | 好 | 否 |
2 | 青年 | 是 | 否 | 好 | 是 |
3 | 青年 | 是 | 是 | 一般 | 是 |
4 | 青年 | 否 | 否 | 一般 | 否 |
5 | 中年 | 否 | 否 | 一般 | 否 |
6 | 中年 | 否 | 否 | 好 | 否 |
7 | 中年 | 是 | 是 | 好 | 是 |
8 | 中年 | 否 | 是 | 非常好 | 是 |
9 | 中年 | 否 | 是 | 非常好 | 是 |
10 | 老年 | 否 | 是 | 非常好 | 是 |
11 | 老年 | 否 | 是 | 好 | 是 |
12 | 老年 | 是 | 否 | 好 | 是 |
13 | 老年 | 是 | 否 | 非常好 | 是 |
14 | 老年 | 否 | 否 | 一般 | 否 |
熵
def calc_ent(datasets): data_length = len(datasets) label_count = {} for i in range(data_length): label = datasets[i][-1] if label not in label_count: label_count[label] = 0 label_count[label] += 1 ent = -sum([(p / data_length) * log(p / data_length, 2) for p in label_count.values()]) return ent
条件熵
def cond_ent(datasets, axis=0): data_length = len(datasets) feature_sets = {} for i in range(data_length): feature = datasets[i][axis] if feature not in feature_sets: feature_sets[feature] = [] feature_sets[feature].append(datasets[i]) cond_ent = sum([(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()]) return cond_ent
calc_ent(datasets)
0.9709505944546686
信息增益
def info_gain(ent, cond_ent): return ent - cond_ent
def info_gain_train(datasets): count = len(datasets[0]) - 1 ent = calc_ent(datasets) best_feature = [] for c in range(count): c_info_gain = info_gain(ent, cond_ent(datasets, axis=c)) best_feature.append((c, c_info_gain)) print('特征({}) 的信息增益为: {:.3f}'.format(labels[c], c_info_gain)) # 比较大小 best_ = max(best_feature, key=lambda x: x[-1]) return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
info_gain_train(np.array(datasets))
特征(年龄) 的信息增益为:0.083 特征(有工作) 的信息增益为:0.324 特征(有自己的房子) 的信息增益为:0.420 特征(信贷情况) 的信息增益为:0.363 '特征(有自己的房子)的信息增益最大,选择为根节点特征'
利用ID3算法生成决策树
# 定义节点类 二叉树 class Node: def __init__(self, root=True, label=None, feature_name=None, feature=None): self.root = root self.label = label self.feature_name = feature_name self.feature = feature self.tree = {} self.result = { 'label:': self.label, 'feature': self.feature, 'tree': self.tree } def __repr__(self): return '{}'.format(self.result) def add_node(self, val, node): self.tree[val] = node def predict(self, features): if self.root is True: return self.label return self.tree[features[self.feature]].predict(features) class DTree: def __init__(self, epsilon=0.1): self.epsilon = epsilon self._tree = {} # 熵 @staticmethod def calc_ent(datasets): data_length = len(datasets) label_count = {} for i in range(data_length): label = datasets[i][-1] if label not in label_count: label_count[label] = 0 label_count[label] += 1 ent = -sum([(p / data_length) * log(p / data_length, 2) for p in label_count.values()]) return ent # 经验条件熵 def cond_ent(self, datasets, axis=0): data_length = len(datasets) feature_sets = {} for i in range(data_length): feature = datasets[i][axis] if feature not in feature_sets: feature_sets[feature] = [] feature_sets[feature].append(datasets[i]) cond_ent = sum([(len(p) / data_length) * self.calc_ent(p) for p in feature_sets.values()]) return cond_ent # 信息增益 @staticmethod def info_gain(ent, cond_ent): return ent - cond_ent def info_gain_train(self, datasets): count = len(datasets[0]) - 1 ent = self.calc_ent(datasets) best_feature = [] for c in range(count): c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c)) best_feature.append((c, c_info_gain)) # 比较大小 best_ = max(best_feature, key=lambda x: x[-1]) return best_ def train(self, train_data): """ input:数据集D(DataFrame格式),特征集A,阈值eta output:决策树T """ _, y_train, features = train_data.iloc[:, : -1], train_data.iloc[:, -1], train_data.columns[: -1] # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T if len(y_train.value_counts()) == 1: return Node(root=True, label=y_train.iloc[0]) # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T if len(features) == 0: return Node( root=True, label=y_train.value_counts().sort_values( ascending=False).index[0]) # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征 max_feature, max_info_gain = self.info_gain_train(np.array(train_data)) max_feature_name = features[max_feature] # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回T if max_info_gain < self.epsilon: return Node( root=True, label=y_train.value_counts().sort_values( ascending=False).index[0]) # 5,构建Ag子集 node_tree = Node( root=False, feature_name=max_feature_name, feature=max_feature) feature_list = train_data[max_feature_name].value_counts().index for f in feature_list: sub_train_df = train_data.loc[train_data[max_feature_name] == f].drop([max_feature_name], axis=1) # 6, 递归生成树 sub_tree = self.train(sub_train_df) node_tree.add_node(f, sub_tree) # pprint.pprint(node_tree.tree) return node_tree def fit(self, train_data): self._tree = self.train(train_data) return self._tree def predict(self, X_test): return self._tree.predict(X_test)
datasets, labels = create_data() data_df = pd.DataFrame(datasets, columns=labels) dt = DTree() tree = dt.fit(data_df)
tree
{'label:': None, 'feature': 2, 'tree': {'否': {'label:': None, 'feature': 1, 'tree': {'否': {'label:': '否', 'feature': None, 'tree': {}}, '是': {'label:': '是', 'feature': None, 'tree': {}}}}, '是': {'label:': '是', 'feature': None, 'tree': {}}}}
dt.predict(['老年', '否', '否', '一般'])
'否'
Scikit-learn实例
from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from collections import Counter
使用Iris数据集,我们可以构建如下树:
# data def create_data(): iris = load_iris() df = pd.DataFrame(iris.data, columns=iris.feature_names) df['label'] = iris.target df.columns = [ 'sepal length', 'sepal width', 'petal length', 'petal width', 'label' ] data = np.array(df.iloc[:100, [0, 1, -1]]) # print(data) return data[:, :2], data[:, -1],iris.feature_names[0:2] X, y,feature_name= create_data() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
决策树分类
from sklearn.tree import DecisionTreeClassifier from sklearn.tree import export_graphviz import graphviz from sklearn import tree clf = DecisionTreeClassifier() clf.fit(X_train, y_train,) clf.score(X_test, y_test)
0.9666666666666667
一旦经过训练,就可以用 plot_tree函数绘制树:
tree.plot_tree(clf)
[Text(197.83636363636364, 195.696, 'X[0] <= 5.45 gini = 0.5 samples = 70 value = [36, 34]'), Text(121.74545454545455, 152.208, 'X[1] <= 2.8 gini = 0.157 samples = 35 value = [32, 3]'), Text(60.872727272727275, 108.72, 'X[0] <= 4.75 gini = 0.444 samples = 3 value = [1, 2]'), Text(30.436363636363637, 65.232, 'gini = 0.0 samples = 1 value = [1, 0]'), Text(91.30909090909091, 65.232, 'gini = 0.0 samples = 2 value = [0, 2]'), Text(182.61818181818182, 108.72, 'X[0] <= 5.3 gini = 0.061 samples = 32 value = [31, 1]'), Text(152.1818181818182, 65.232, 'gini = 0.0 samples = 29 value = [29, 0]'), Text(213.05454545454546, 65.232, 'X[1] <= 3.2 gini = 0.444 samples = 3 value = [2, 1]'), Text(182.61818181818182, 21.744, 'gini = 0.0 samples = 1 value = [0, 1]'), Text(243.4909090909091, 21.744, 'gini = 0.0 samples = 2 value = [2, 0]'), Text(273.92727272727274, 152.208, 'X[1] <= 3.5 gini = 0.202 samples = 35 value = [4, 31]'), Text(243.4909090909091, 108.72, 'gini = 0.0 samples = 31 value = [0, 31]'), Text(304.3636363636364, 108.72, 'gini = 0.0 samples = 4 value = [4, 0]')]
也可以导出树
tree_pic = export_graphviz(clf, out_file="mytree.pdf") with open('mytree.pdf') as f: dot_graph = f.read()
graphviz.Source(dot_graph)
或者,还可以使用函数 export_text以文本格式导出树。此方法不需要安装外部库,而且更紧凑:
from sklearn.tree import export_text
r = export_text(clf,feature_name)
print(r)
|--- sepal width (cm) <= 3.15 | |--- sepal length (cm) <= 4.95 | | |--- sepal width (cm) <= 2.65 | | | |--- class: 1.0 | | |--- sepal width (cm) > 2.65 | | | |--- class: 0.0 | |--- sepal length (cm) > 4.95 | | |--- class: 1.0 |--- sepal width (cm) > 3.15 | |--- sepal length (cm) <= 5.85 | | |--- class: 0.0 | |--- sepal length (cm) > 5.85 | | |--- class: 1.0
决策树回归
import numpy as np from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt
# Create a random dataset rng = np.random.RandomState(1) X = np.sort(5 * rng.rand(80, 1), axis=0) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(16))
# Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_1.fit(X, y) regr_2.fit(X, y) # Predict X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) # Plot the results plt.figure() plt.scatter(X, y, s=20, edgecolor="black", c="darkorange", label="data") plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2) plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Decision Tree Regression") plt.legend() plt.show()
决策树调参
# 导入库 from sklearn.tree import DecisionTreeClassifier from sklearn import datasets from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from sklearn.model_selection import GridSearchCV from sklearn.tree import DecisionTreeRegressor from sklearn import metrics
# 导入数据集 X = datasets.load_iris() # 以全部字典形式返回,有data,target,target_names三个键 data = X.data target = X.target name = X.target_names x, y = datasets.load_iris(return_X_y=True) # 能一次性取前2个 print(x.shape, y.shape)
(150, 4) (150,)
# 数据分为训练集和测试集 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=100)
# 用GridSearchCV寻找最优参数(字典) param = { 'criterion': ['gini'], 'max_depth': [30, 50, 60, 100], 'min_samples_leaf': [2, 3, 5, 10], 'min_impurity_decrease': [0.1, 0.2, 0.5] } grid = GridSearchCV(DecisionTreeClassifier(), param_grid=param, cv=6) grid.fit(x_train, y_train) print('最优分类器:', grid.best_params_, '最优分数:', grid.best_score_) # 得到最优的参数和分值
最优分类器: {'criterion': 'gini', 'max_depth': 30, 'min_impurity_decrease': 0.2, 'min_samples_leaf': 3} 最优分数: 0.9416666666666665
参考
https://github.com/fengdu78/lihang-code
《统计学习方法》,清华大学出版社,李航着,2019年出版
https://scikit-learn.org
Be First to Comment