目录
图片裁剪预处理并划分数据集
提取人脸并判别是否为笑脸
图片裁剪预处理并划分数据集
准备好图片集:
对图片进行裁剪:
以代码:
import dlib # 人脸识别的库dlib import numpy as np # 数据处理的库numpy import cv2 # 图像处理的库OpenCv import os # dlib预测器 detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor('D:\\BaiduNetdiskDownload\\shape_predictor_68_face_landmarks.dat') # 读取图像的路径 path_read = "D:\\2021xiazai\\genki4k (1)\\genki4k\\files" num=0 for file_name in os.listdir(path_read): #aa是图片的全路径 aa=(path_read +"/"+file_name) #读入的图片的路径中含非英文 img=cv2.imdecode(np.fromfile(aa, dtype=np.uint8), cv2.IMREAD_UNCHANGED) #获取图片的宽高 img_shape=img.shape img_height=img_shape[0] img_width=img_shape[1] # 用来存储生成的单张人脸的路径 path_save="D:\\2021xiazai\\genki4k (1)\\genki4k\\files1" # dlib检测 dets = detector(img,1) print("人脸数:", len(dets)) for k, d in enumerate(dets): if len(dets)>1: continue num=num+1 # 计算矩形大小 # (x,y), (宽度width, 高度height) pos_start = tuple([d.left(), d.top()]) pos_end = tuple([d.right(), d.bottom()]) # 计算矩形框大小 height = d.bottom()-d.top() width = d.right()-d.left() # 根据人脸大小生成空的图像 img_blank = np.zeros((height, width, 3), np.uint8) for i in range(height): if d.top()+i>=img_height:# 防止越界 continue for j in range(width): if d.left()+j>=img_width:# 防止越界 continue img_blank[i][j] = img[d.top()+i][d.left()+j] img_blank = cv2.resize(img_blank, (200, 200), interpolation=cv2.INTER_CUBIC) cv2.imencode('.jpg', img_blank)[1].tofile(path_save+"\\"+"file"+str(num)+".jpg") # 正确方法
效果:
之后划分数据集:
以代码:
import os, shutil # 原始数据集路径 original_dataset_dir = 'D:\\2021xiazai\\genki4k (1)\\genki4k\\files1' # 新的数据集 base_dir = 'D:\\2021xiazai\\genki4k (1)\\genki4k\\files2' os.mkdir(base_dir) # 训练图像、验证图像、测试图像的目录 train_dir = os.path.join(base_dir, 'train') os.mkdir(train_dir) validation_dir = os.path.join(base_dir, 'validation') os.mkdir(validation_dir) test_dir = os.path.join(base_dir, 'test') os.mkdir(test_dir) train_cats_dir = os.path.join(train_dir, 'smile') os.mkdir(train_cats_dir) train_dogs_dir = os.path.join(train_dir, 'unsmile') os.mkdir(train_dogs_dir) validation_cats_dir = os.path.join(validation_dir, 'smile') os.mkdir(validation_cats_dir) validation_dogs_dir = os.path.join(validation_dir, 'unsmile') os.mkdir(validation_dogs_dir) test_cats_dir = os.path.join(test_dir, 'smile') os.mkdir(test_cats_dir) test_dogs_dir = os.path.join(test_dir, 'unsmile') os.mkdir(test_dogs_dir) # 复制1000张笑脸图片到train_c_dir fnames = ['file{}.jpg'.format(i) for i in range(1,900)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(train_cats_dir, fname) shutil.copyfile(src, dst) fnames = ['file{}.jpg'.format(i) for i in range(900, 1350)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(validation_cats_dir, fname) shutil.copyfile(src, dst) # Copy next 500 cat images to test_cats_dir fnames = ['file{}.jpg'.format(i) for i in range(1350, 1800)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(test_cats_dir, fname) shutil.copyfile(src, dst) fnames = ['file{}.jpg'.format(i) for i in range(2127,3000)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(train_dogs_dir, fname) shutil.copyfile(src, dst) # Copy next 500 dog images to validation_dogs_dir fnames = ['file{}.jpg'.format(i) for i in range(3000,3878)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(validation_dogs_dir, fname) shutil.copyfile(src, dst) # Copy next 500 dog images to test_dogs_dir fnames = ['file{}.jpg'.format(i) for i in range(3000,3878)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(test_dogs_dir, fname) shutil.copyfile(src, dst)
之后会生成一个文件files2:
提取人脸并判别是否为笑脸
导入依赖包:
# 导入包 import numpy as np import cv2 import dlib import random#构建随机测试集和训练集 from sklearn.svm import SVC #导入svm from sklearn.svm import LinearSVC #导入线性svm from sklearn.pipeline import Pipeline #导入python里的管道 import os import joblib#保存模型 from sklearn.preprocessing import StandardScaler,PolynomialFeatures #导入多项式回归和标准化 import tqdm
图片路径:
folder_path='D:/2021xiazai/genki4k/genki4k/' label='labels.txt'#标签文件 pic_folder='files/'#图片文件路径
获得默认的人脸检测器和训练好的人脸68特征点检测器:
#获得默认的人脸检测器和训练好的人脸68特征点检测器 def get_detector_and_predicyor(): #使用dlib自带的frontal_face_detector作为我们的特征提取器 detector = dlib.get_frontal_face_detector() """ 功能:人脸检测画框 参数:PythonFunction和in Classes in classes表示采样次数,次数越多获取的人脸的次数越多,但更容易框错 返回值是矩形的坐标,每个矩形为一个人脸(默认的人脸检测器) """ #返回训练好的人脸68特征点检测器 predictor = dlib.shape_predictor('D:/BaiduNetdiskDownload/shape_predictor_68_face_landmarks.dat') return detector,predictor #获取检测器 detector,predictor=get_detector_and_predicyor()
截取面部函数:
def cut_face(img,detector,predictor): #截取面部 img_gry=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) rects = detector(img_gry, 0) if len(rects)!=0: mouth_x=0 mouth_y=0 landmarks = np.matrix([[p.x, p.y] for p in predictor(img,rects[0]).parts()]) for i in range(47,67):#嘴巴范围 mouth_x+=landmarks[i][0,0] mouth_y+=landmarks[i][0,1] mouth_x=int(mouth_x/20) mouth_y=int(mouth_y/20) #裁剪图片 img_cut=img_gry[mouth_y-20:mouth_y+20,mouth_x-20:mouth_x+20] return img_cut else: return 0#检测不到人脸返回0
提取特征值函数:
#提取特征值 def get_feature(files_train,face,face_feature): for i in tqdm.tqdm(range(len(files_train))): img=cv2.imread(folder_path+pic_folder+files_train[i]) cut_img=cut_face(img,detector,predictor) if type(cut_img)!=int: face.append(True) cut_img=cv2.resize(cut_img,(64,64)) #padding:边界处理的padding padding=(8,8) winstride=(16,16) hogdescrip=hog.compute(cut_img,winstride,padding).reshape((-1,)) face_feature.append(hogdescrip) else: face.append(False)#没有检测到脸的 face_feature.append(0)
筛选函数:
def filtrate_face(face,face_feature,face_site): #去掉检测不到脸的图片的特征并返回特征数组和相应标签 face_features=[] #获取标签 label_flag=[] with open(folder_path+label,'r') as f: lines=f.read().splitlines() #筛选出能检测到脸的,并收集对应的label for i in tqdm.tqdm(range(len(face_site))): if face[i]:#判断是否检测到脸 #pop之后要删掉当前元素,后面的元素也要跟着前移,所以每次提取第一位就行了 face_features.append(face_feature.pop(0)) label_flag.append(int(lines[face_site[i]][0])) else: face_feature.pop(0) datax=np.float64(face_features) datay=np.array(label_flag) return datax,datay
多项式SVM:
def PolynomialSVC(degree,c=10):#多项式svm return Pipeline([ # 将源数据 映射到 3阶多项式 ("poly_features", PolynomialFeatures(degree=degree)), # 标准化 ("scaler", StandardScaler()), # SVC线性分类器 ("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42,max_iter=10000)) ])
#svm高斯核 def RBFKernelSVC(gamma=1.0): return Pipeline([ ('std_scaler',StandardScaler()), ('svc',SVC(kernel='rbf',gamma=gamma)) ])
训练函数:
def train(files_train,train_site):#训练 ''' files_train:训练文件名的集合 train_site :训练文件在文件夹里的位置 ''' #是否检测到人脸 train_face=[] #人脸的特征数组 train_feature=[] #提取训练集的特征数组 get_feature(files_train,train_face,train_feature) #筛选掉检测不到脸的特征数组 train_x,train_y=filtrate_face(train_face,train_feature,train_site) svc=PolynomialSVC(degree=1) svc.fit(train_x,train_y) return svc#返回训练好的模型
测试函数:
def test(files_test,test_site,svc):#预测,查看结果集 ''' files_train:训练文件名的集合 train_site :训练文件在文件夹里的位置 ''' #是否检测到人脸 test_face=[] #人脸的特征数组 test_feature=[] #提取训练集的特征数组 get_feature(files_test,test_face,test_feature) #筛选掉检测不到脸的特征数组 test_x,test_y=filtrate_face(test_face,test_feature,test_site) pre_y=svc.predict(test_x) ac_rate=0 for i in range(len(pre_y)): if(pre_y[i]==test_y[i]): ac_rate+=1 ac=ac_rate/len(pre_y)*100 print("准确率为"+str(ac)+"%") return ac
HOG特征提取器:
#设置hog的参数 winsize=(64,64) blocksize=(32,32) blockstride=(16,16) cellsize=(8,8) nbin=9 #定义hog hog=cv2.HOGDescriptor(winsize,blocksize,blockstride,cellsize,nbin) #获取文件夹里有哪些文件 files=os.listdir(folder_path+pic_folder)
使用10-fold cross validation,数据集中随机的9/10做为训练集:
ac=float(0) for j in range(10): site=[i for i in range(4000)] #训练所用的样本所在的位置 train_site=random.sample(site,3600) #预测所用样本所在的位置 test_site=[] for i in range(len(site)): if site[i] not in train_site: test_site.append(site[i]) files_train=[] #训练集,占总数的十分之九 for i in range(len(train_site)): files_train.append(files[train_site[i]]) #测试集 files_test=[] for i in range(len(test_site)): files_test.append(files[test_site[i]]) svc=train(files_train,train_site) ac=ac+test(files_test,test_site,svc) save_path='D:/2021xiazai/genki4k/genki4k/save'+str(j)+'(hog).pkl' joblib.dump(svc,save_path) ac=ac/10 print("平均准确率为"+str(ac)+"%")
可以看到:
检测函数(把文件中的pkl文件放到model下):
def test1(files_test,test_site,svc):#预测,查看结果集 ''' files_train:训练文件名的集合 train_site :训练文件在文件夹里的位置 ''' #是否检测到人脸 test_face=[] #人脸的特征数组 test_feature=[] #提取训练集的特征数组 get_feature(files_test,test_face,test_feature) #筛选掉检测不到脸的特征数组 test_x,test_y=filtrate_face(test_face,test_feature,test_site) pre_y=svc.predict(test_x) tp=0 tn=0 for i in range(len(pre_y)): if pre_y[i]==test_y[i] and pre_y[i]==1: tp+=1 elif pre_y[i]==test_y[i] and pre_y[i]==0: tn+=1 f1=2*tp/(tp+len(pre_y)-tn) print(f1)
svc7=joblib.load('source/model/save9(hog).pkl') site=[i for i in range(4000)] #训练所用的样本所在的位置 train_site=random.sample(site,3600) #预测所用样本所在的位置 test_site=[] for i in range(len(site)): if site[i] not in train_site: test_site.append(site[i]) #测试集 files_test=[] for i in range(len(test_site)): files_test.append(files[test_site[i]]) test1(files_test,test_site,svc7)
可以看到:
笑脸检测函数:
def smile_detector(img,svc): cut_img=cut_face(img,detector,predictor) a=[] if type(cut_img)!=int: cut_img=cv2.resize(cut_img,(64,64)) #padding:边界处理的padding padding=(8,8) winstride=(16,16) hogdescrip=hog.compute(cut_img,winstride,padding).reshape((-1,)) a.append(hogdescrip) result=svc.predict(a) a=np.array(a) return result[0] else : return 2
找一个图片测试:
##图片检测 pic_path='D:/2021xiazai2/1.jpg' img=cv2.imread(pic_path) result=smile_detector(img,svc7) if result==1: img=cv2.putText(img,'smile',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1) elif result==0: img=cv2.putText(img,'no smile',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1) else: img=cv2.putText(img,'no face',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1) cv2.imshow('video', img) cv2.waitKey(0)
可以看到:
调用摄像头实时检测表情,按s键保存图片,按esc退出:
camera = cv2.VideoCapture(0)#打开摄像头 ok=True flag=0 # 打开摄像头 参数为输入流,可以为摄像头或视频文件 while ok: ok,img = camera.read() # 转换成灰度图像 result=smile_detector(img,svc7) if result==1: img=cv2.putText(img,'smile',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1) elif result==0: img=cv2.putText(img,'no smile',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1) else: img=cv2.putText(img,'no face',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1) cv2.imshow('video', img) k = cv2.waitKey(1) if k == 27: # press 'ESC' to quit break elif k==115: pic_save_path='../source/picture/GENKI-R2009a/result/'+str(flag)+'.jpg' flag+=1 cv2.imwrite(pic_save_path,img) camera.release() cv2.destroyAllWindows()
通过opencv+python+HOG算法识别微笑表情,对固定图片进行人脸识别并判断微笑表情,也用了摄像头试试判别微笑表情。
微笑识别(HOG+SVM+opencv+python)
Be First to Comment