1.MNIST数据集
MNIST数据集是由0 到9 的手写数字图像构成的。训练图像有6 万张,测试图像有1 万张每一张图片都有对应的标签数字。因此这个测试集就可以作为验证集使用。
MNIST的图像,每张图片是包含28 像素× 28 像素的灰度图像(1 通道),各个像素的取值在0 到255 之间。每张图片都由一个28 ×28 的矩阵表示,每张图片都由一个784 维的向量表示(28*28=784)。
详细介绍参考: http://yann.lecun.com/exdb/mnist/
2.用神经网络做MNIST手写数字识别
模型结构:
模型如图所示,输入二维张量展开成一维。再经过若干次组合的,Linear层和激活函数层,最后返回。
在模型使用时,后面接到交叉熵损失函数上。所以模型的最后一层不做激活。因为本身交叉熵损失函数带有激活功能。
3.代码实现(python+pytorch)
分四个步骤:
第一步:数据集准备和加载;第二步:设计模型;第三步:构建损失函数和优化器;第四步:模型的训练和验证
因pytorc中封装了很多模块。所以我们在实现时,更多的是了解各个模块的功能,以便组合使用。
import torch from torchvision import transforms from torchvision import datasets from torch.utils.data import DataLoader import torch.optim as optim import torch.nn.functional as F import matplotlib.pyplot as plt batch_size = 64 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307),(0.3081)) #两个参数,平均值和标准差 ]) train_dataset = datasets.MNIST( root="../dataset/mnist/", train= True, download= True, transform= transform ) train_loader = DataLoader(train_dataset, shuffle = True, batch_size = batch_size) test_dataset = datasets.MNIST( root="../dataset/mnist/", train=False, download=True, transform=transform ) test_loder = DataLoader(test_dataset, shuffle = True, batch_size = batch_size) class Net(torch.nn.Module): def __init__(self): super(Net,self).__init__() self.linear1 = torch.nn.Linear(784,512) self.linear2 = torch.nn.Linear(512,256) self.linear3 = torch.nn.Linear(256,128) self.linear4 = torch.nn.Linear(128,64) self.linear5 = torch.nn.Linear(64,10) def forward(self,x): x = x.view(-1,784) # 改变张量形状。把输入展开成若干行,784列 x = F.leaky_relu(self.linear1(x)) x = F.leaky_relu(self.linear2(x)) x = F.leaky_relu(self.linear3(x)) x = F.leaky_relu(self.linear4(x)) return self.linear5(x) #最后一层不做激活,因为下一步输入到交叉损失函数中,交叉熵包含了激活层 model = Net() criterion = torch.nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum= 0.5) def train(epoch): total = 0 running_loss = 0.0 train_loss = 0.0 #记录每次epoch的损失 accuracy = 0 #记录每次epoch的accuracy for batch_id, data in enumerate(train_loader,0): inputs, target = data optimizer.zero_grad() # forword + backward + update outputs = model(inputs) loss = criterion(outputs, target) _, predicted = torch.max(outputs.data, dim=1) accuracy += (predicted == target).sum().item() total += target.size(0) loss.backward() optimizer.step() running_loss += loss.item() train_loss = running_loss #每迭代300次,求一下这三百次迭代的平均 if batch_id % 300 == 299: print('[%d, %5d] loss: %.3f' %(epoch+1, batch_id+1, running_loss / 300)) running_loss = 0.0 print('第 %d epoch的 Accuracy on train set: %d %%, Loss on train set: %f' % (epoch + 1, 100 * accuracy / total, train_loss)) #返回acc和loss return 1.0 * accuracy / total, train_loss def validation(epoch): correct = 0 total = 0 val_loss = 0.0 with torch.no_grad(): for data in test_loder: images, target = data outputs = model(images) loss = criterion(outputs, target) val_loss += loss.item() _, predicted = torch.max(outputs.data, dim=1) total += target.size(0) correct += (predicted == target).sum().item() print('第 %d epoch的 Accuracy on validation set: %d %%, Loss on validation set: %f' %(epoch+1,100*correct / total, val_loss)) #返回acc和loss return 1.0 * correct / total, val_loss #pytorch绘制loss和accuracy曲线 def draw_fig(list,name,name2,epoch): # 我这里迭代了200次,所以x的取值范围为(0,200),然后再将每次相对应的准确率以及损失率附在x上 x1 = range(1, epoch+1) print(x1) y1 = list if name=="loss": plt.cla() plt.title('Train loss vs. epoch', fontsize=20) plt.plot(x1, y1, '.-') plt.xlabel('epoch', fontsize=20) plt.ylabel('Train loss', fontsize=20) plt.grid() str = "./lossAndacc/"+name2+"_loss.png" plt.savefig(str) plt.show() elif name =="acc": plt.cla() plt.title('Train accuracy vs. epoch', fontsize=20) plt.plot(x1, y1, '.-') plt.xlabel('epoch', fontsize=20) plt.ylabel('Train accuracy', fontsize=20) plt.grid() str2 = "./lossAndacc/" + name2 + "_accuracy.png" plt.savefig(str2) plt.show() def draw_in_one(list,epoch): # x_axix,train_pn_dis这些都是长度相同的list() # 开始画图 x_axix = [x for x in range(1, epoch+1)] #把ranage转化为list train_acc = list[0] train_loss = list[1] val_acc = list[2] val_loss = list[3] #sub_axix = filter(lambda x: x % 200 == 0, x_axix) plt.title('Result Analysis') plt.plot(x_axix, train_acc, color='green', label='training accuracy') plt.plot(x_axix, train_loss, color='red', label='training loss') plt.plot(x_axix, val_acc, color='skyblue', label='val accuracy') plt.plot(x_axix, val_loss, color='blue', label='val loss') plt.legend() # 显示图例 plt.xlabel('epoch times') plt.ylabel('rate') plt.show() # python 一个折线图绘制多个曲线 if __name__ == '__main__': train_loss = [] train_acc = [] val_loss = [] val_acc = [] epoches = 10 list = [] for epoch in range(epoches): acc1, loss1 = train(epoch) train_loss.append(loss1) train_acc.append(acc1) acc2, loss2 = validation(epoch) val_loss.append(loss2) val_acc.append(acc2) #四幅图分开绘制 draw_fig(train_loss, "loss","train", epoches) draw_fig(train_acc, "acc", "train",epoches) draw_fig(val_loss, "loss","val", epoches) draw_fig(val_acc, "acc","val", epoches) # 四幅图合并绘制 list.append(train_acc) list.append(train_loss) list.append(val_acc) list.append(val_loss) draw_in_one(list, epoches)
结果:
train acc
train loss
val acc
注:图的title代码中有误。读者自行更改
val loss
四幅图合并绘制
在计算这四个值时,代码可能有点小错误。导致画的图不很准确。读者发现后,自行更改吧
控制台输出内容:
E:\anaconda3\envs\pytorch\python.exe D:/PycharmProjects/pytorchProject/手写数字识别.py [1, 300] loss: 2.211 [1, 600] loss: 0.881 [1, 900] loss: 0.439 第 1 epoch的 Accuracy on train set: 65 %, Loss on train set: 14.349343 第 1 epoch的 Accuracy on validation set: 89 %, Loss on validation set: 55.763730 [2, 300] loss: 0.325 [2, 600] loss: 0.284 [2, 900] loss: 0.242 第 2 epoch的 Accuracy on train set: 91 %, Loss on train set: 8.700389 第 2 epoch的 Accuracy on validation set: 93 %, Loss on validation set: 34.062688 [3, 300] loss: 0.199 [3, 600] loss: 0.180 [3, 900] loss: 0.159 第 3 epoch的 Accuracy on train set: 94 %, Loss on train set: 5.356741 第 3 epoch的 Accuracy on validation set: 94 %, Loss on validation set: 25.656663 [4, 300] loss: 0.138 [4, 600] loss: 0.131 [4, 900] loss: 0.117 第 4 epoch的 Accuracy on train set: 96 %, Loss on train set: 4.067950 第 4 epoch的 Accuracy on validation set: 96 %, Loss on validation set: 19.429859 [5, 300] loss: 0.110 [5, 600] loss: 0.093 [5, 900] loss: 0.095 第 5 epoch的 Accuracy on train set: 97 %, Loss on train set: 3.809268 第 5 epoch的 Accuracy on validation set: 96 %, Loss on validation set: 17.569023 [6, 300] loss: 0.080 [6, 600] loss: 0.082 [6, 900] loss: 0.074 第 6 epoch的 Accuracy on train set: 97 %, Loss on train set: 3.285731 第 6 epoch的 Accuracy on validation set: 97 %, Loss on validation set: 14.668039 [7, 300] loss: 0.062 [7, 600] loss: 0.068 [7, 900] loss: 0.064 第 7 epoch的 Accuracy on train set: 98 %, Loss on train set: 2.248924 第 7 epoch的 Accuracy on validation set: 97 %, Loss on validation set: 15.119584 [8, 300] loss: 0.048 [8, 600] loss: 0.055 [8, 900] loss: 0.053 第 8 epoch的 Accuracy on train set: 98 %, Loss on train set: 2.621493 第 8 epoch的 Accuracy on validation set: 97 %, Loss on validation set: 13.119277 [9, 300] loss: 0.042 [9, 600] loss: 0.041 [9, 900] loss: 0.047 第 9 epoch的 Accuracy on train set: 98 %, Loss on train set: 1.698503 第 9 epoch的 Accuracy on validation set: 97 %, Loss on validation set: 13.277307 [10, 300] loss: 0.029 [10, 600] loss: 0.037 [10, 900] loss: 0.040 第 10 epoch的 Accuracy on train set: 98 %, Loss on train set: 1.292258 第 10 epoch的 Accuracy on validation set: 97 %, Loss on validation set: 13.084560 range(1, 11) range(1, 11) range(1, 11) range(1, 11) Process finished with exit code 0
Be First to Comment