Press "Enter" to skip to content

浏览器里玩机器学习、深度学习

本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.

 

大家好,我是章北海

 

我一直探索更好玩地介绍机器学习,降低学习门槛,用其开发有趣,有价值的应用。之前介绍过很多机器学习应用方面的玩法,比如: gRPC部署训练好的机器学习模型使用FastAPI构建机器学习API用streamlit快速生成机器学习web应用在Excel里玩机器学习 。←点击直达

 

最近我在玩 TensorFlow.js ,计划用它整个活儿。本文就是 TensorFlow.js 的极简入门。

 

TensorFlow.js

 

TensorFlow.js 是一个开源硬件加速 JavaScript 库,用于训练和部署机器学习模型。它可以让我们直接在 浏览器 中训练和部署机器学习模型的 JavaScript 库,可以非常灵活地进行 AI 应用的开发:

 

不需要安装软件或驱动(打开浏览器即可使用);

 

可以通过浏览器进行更加方便的人机交互;

 

可以通过手机浏览器,调用手机硬件的各种传感器(如:GPS、摄像头等);

 

用户的数据可以无需上传到服务器,在本地即可完成所需操作。

 

TensorFlow.js 主要是由 WebGL 提供能力支持,并提供了一个用于定义模型的高层 API ,以及用于线性代数和自动微分的低级 API 。TensorFlow.js 支持导入 TensorFlow SavedModels 和 Keras 模型。

 

 

TensorFlow.js 环境配置

 

在浏览器中加载 TensorFlow.js ,最方便的办法是在 HTML 中直接引用 TensorFlow.js 发布的 NPM 包中已经打包安装好的 JavaScript 代码。

 

<html>
<head>
   <script src="http://unpkg.com/@tensorflow/tfjs/dist/tf.min.js"></script>

 

也可以在Node.js中使用TensorFlow.js,配置也不算太复杂:

 

安装 Node.js npm yarn

 

Node.js是基于Chrome的JavaScript构建的跨平台JavaScript运行时环境,npm是Node.js的默认程序包管理器,也是世界上最大的软件注册表。

 

sudo apt update
sudo apt install nodejs npm

 

如果已经安装过node.js,尽量升级到最新版本

 

# 更新npm :
npm install -g npm
# 更新node版本:
先清除npm缓存:
npm cache clean -f
# 然后安装n模块:
npm install -g n
# 升级node.js到最新稳定版:
n stable

 

TensorFlow.js的example运行时会用到 Yarn 这里一并安装。(不装也行,npm撑得住)

 

Yarn就是一个类似于 npm 的包管理工具,主要的优势在于:速度快、离线模式、版本控制。

 

坑已经帮大家踩过了,请必按以下方式安装:

 

curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt update && sudo apt install yarn
yarn

 

建立 TensorFlow.js 项目目录:

 

$ mkdir tfjs
$ cd tfjs

 

安装 TensorFlow.js:

 

# 初始化项目管理文件 package.json
$ npm init -y
# 安装 tfjs 库,纯 JavaScript 版本
$ npm install @tensorflow/tfjs
# 安装 tfjs-node 库,C Binding 版本
$ npm install @tensorflow/tfjs-node
# 安装 tfjs-node-gpu 库,支持 CUDA GPU 加速
$ npm install @tensorflow/tfjs-node-gpu

 

确认 Node.js 和 TensorFlow.js 工作正常:

 

$ node
> require('@tensorflow/tfjs').version
{
    'tfjs-core': '1.3.1',
    'tfjs-data': '1.3.1',
    'tfjs-layers': '1.3.1',
    'tfjs-converter': '1.3.1',
    tfjs: '1.3.1'
}
>

 

如果你看到了上面的 tfjs-core, tfjs-data, tfjs-layers 和 tfjs-converter 的输出信息,那幺就说明环境配置没有问题了。

 

然后,在 JavaScript 程序中,通过以下指令,即可引入 TensorFlow.js:

 

import * as tf from '@tensorflow/tfjs'
console.log(tf.version.tfjs)
// Output: 1.3.1

 

玩法及Eamples

 

TensorFlow.js 玩法有一下几种:

在浏览器上运行官方 TensorFlow.js 模型:
https://www.tensorflow.org/js/models/

转换 Python 模型: https://www.tensorflow.org/js/tutorials#convert_pretained_models_to_tensorflowjs
使用迁移学习来用你自己的数据自定义模型
https://www.tensorflow.org/js/tutorials/transfer/what_is_transfer_learning
直接在 JavaScript 中构建和训练模型 https://www.tensorflow.org/js/tutorials

最好的学习资源是TensorFlow.js官方案例:

 

可以直接点击链接直达感受一下TensorFlow.js的魅力

 

也可以clone整个项目,cd到示例文件夹:

 

#如果你在用yarn:
cd iris
yarn
yarn watch
#如果你在用npm:
cd iris
npm install
npm run watch

 

Be First to Comment

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注