本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.
一、模糊神经网络FNN
模糊神经网络(Fuzzy Neural Networks,FNN)结合了神经网络系统和模糊系统 的长处,它在处理非线性、 模糊性 等问题上有很大的优越性,在 智能信息处理 方面存在巨大的潜力。原理参考:
MATLAB模糊神经网络的预测算法–预测水质 – 知乎 (zhihu.com)
二、数值实验
2.1数据集
部分训练数据的输入:
0.8014998342057620.3000527895464010.7121161597128190.5051739344895970.2698352162034870.422017860908468 0.05165979704336770.3975360445325100.01516977737895050.4604334000426670.7627432926037880.787061088410531 0.8765489403606820.8619351851778510.3650938922739490.5861355989580220.2247784946205400.554578995436846 0.2468022409671800.5046729720476520.5172630565903660.4801558159932600.5811451694069630.439724657458223 0.9286752982797420.4439456101727760.2972801535193980.1323037279391710.9083310330758100.173794595353632 0.1558079755747100.4213394262330550.2215807391155310.5708593071052690.2442084338899600.462680953115857 0.7043830364755270.2525864150320970.8808897206950850.9269753208525750.04213648605779340.230255790744651 0.1102736644624810.4040747745973670.6774372234504090.5426249490255580.8467195524716350.322927110310954 0.4571775616575800.7396875663923570.1021690314296990.5628154318163570.4149862720012470.732646838748673 0.8149116212270100.6454026081721970.2345870409940290.1664909238219760.2391195132512560.754343218035203 0.3649968694459250.9294097267895140.9791830832185680.06107013362478650.5502939571863520.858071763476749 0.06533700208459370.4408539480160980.4239814150970730.1396591899431510.3510524660834210.639386810344331 0.2182473028103370.2716234653585960.8567884001297570.2113934494305600.4729423127581830.628091161779686 0.4379133814435220.7669244162233520.4418822071176450.6769833130037300.3787310303906150.238794185601831 0.1646039548917930.8487158511059420.8673386590896720.5238445530684020.09944312226246920.0150701286034250 0.9840407921935940.5946535997668140.007541751788795570.6854820113672510.05267904609493910.385616709828973 0.7709582675814210.1514116849251030.9792003620268720.6913578924561760.8403359271518640.849810973659949 0.9668857599742110.03675308547917140.9147010927870340.6468540119514230.2920059372224230.578030193450552 0.7451277881319010.6982848268462660.7460407713848210.3259160644119130.8678459348731250.663570693012045 0.9920185005976160.6027917359764130.3531233577902690.5371372948878970.7412141481511780.439961577423509
部分训练数据的输出:
0.130523381100251 0.618623287834938 -0.321656510750489 0.363319811700566 0.254433843325185 0.874845036859242 0.104176523887105 0.235307927198731 0.131726000057133 0.282824656959602 -0.565824500365298 0.882580048430309 0.464001029736403 0.199026179272292 0.583130093729442 0.418305305227949 -0.909251562181937 -0.289435868130322 -0.786544616117274 -0.500913539045167
部分代码如下:最大训练次数为10000次。
close all clear clc inputn=rand(200,6);%训练集输入 outputn=sin(sum(inputn,2));%训练集输出 maxgen=10000;%最大训练次数 m=size(inputn,1);%训练样本数目 I=6;%输入维度 M=6;%神经元 xite=0.001;%可以自己修改 alfa=0.001;%可以自己修改 ErrorP=NaN;
2.2在训练集上的结果:训练集共200组数据
2.2.1预测值与真实值(红色为预测值,绿色为真实值)
2.2.2预测值与真实值的绝对误差
2.2.3绝对误差MAE随着训练次数的变化图
最终在训练集上的平均绝对误差MAE为0.01688,由此可见,训练效果显着。
2.3在测试集上的结果:测试集共100组数据
2.3.1预测值与真实值(红色为预测值,绿色为真实值)
2.3.2预测值与真实值的绝对误差
最终在测试集的平均绝对误差MAE为0.02578。
Be First to Comment