Press "Enter" to skip to content

基于Python贝叶斯优化XGBoost算法调参报错“TypeError: ‘float‘ object is not subscriptable”

本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.

基于Python贝叶斯优化XGBoost算法调参运行情况如下:

itertargetcolsam…gammamax_depthmin_ch…subsample
10.93980.80430.74836.0276.70.6514
20.94050.72310.26767.382347.60.7886
30.93880.80480.71676.818708.60.6096
40.94210.86760.47568.235155.30.6693
50.93990.90020.97147.254569.20.9067

 

报出如下错误:

 

Traceback (most recent call last):
......
    suggestion = acq_max(
  File "/usr/local/python3/lib/python3.8/site-packages/bayes_opt/util.py", line 65, in acq_max
    if max_acq is None or -res.fun[0] >= max_acq:
TypeError: 'float' object is not subscriptable

 

参考关键代码如下:

 

def _xgb_logistic_evaluate(max_depth, subsample, gamma, colsample_bytree, min_child_weight):
    import xgboost as xgb
    params = {
 
        'objective': 'binary:logistic',  # 逻辑回归二分类的问题
        'eval_metric': 'auc',
        'max_depth': int(max_depth),
        'subsample': subsample,  # 0.8
        'eta': 0.3,
        'gamma': gamma,
        'colsample_bytree': colsample_bytree,
        'min_child_weight': min_child_weight}
    cv_result = xgb.cv(params, self.dtrain,
                       num_boost_round=30, nfold=5)
    return 1.0 * cv_result['test-auc-mean'].iloc[-1]
    
def evaluate(self, bo_f, pbounds, init_points, n_iter):
    bo = BayesianOptimization(
        f=bo_f,   # 目标函数
        pbounds=pbounds,  # 取值空间
        verbose=2,  # verbose = 2 时打印全部,verbose = 1 时打印运行中发现的最大值,verbose = 0 将什幺都不打印
        random_state=1,
        )
    bo.maximize(init_points=init_points,   # 随机搜索的步数
                n_iter=n_iter,       # 执行贝叶斯优化迭代次数
                acq='ei')
    print(bo.max)
    res = bo.max
    params_max = res['params']
    return params_max

 

参考stackoverflow上的解释:

 

This is related to a change in scipy 1.8.0, One should use -np.squeeze(res.fun) instead of -res.fun[0]

 

https://github.com/fmfn/BayesianOptimization/issues/300

 

The comments in the bug report indicate reverting to scipy 1.7.0 fixes this,

 

UPDATED: It seems the fix has been merged in the BayesianOptimization package, but the new maintainer is unable to push a release to pypi https://github.com/fmfn/BayesianOptimization/issues/300#issuecomment-1146903850

 

因此,卸载当前scipy 1.8.1,退回到scipy 1.7.0。

 

[[email protected] bin]# pip3 uninstall scipy
......
  Successfully uninstalled scipy-1.8.1
[[email protected] bin]# pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple scipy==1.7
  Successfully installed scipy-1.7.0

 

成功再运行贝叶斯优化调参程序。

 

参考:

 

seul233.python使用贝叶斯优化随机森林时出现TypeError: ‘float’ object is not subscriptable
. CSDN博客. 2022.03

 

https://stackoverflow.com/questions/71460894/bayesianoptimization-fails-due-to-float-error

Be First to Comment

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注