Press "Enter" to skip to content

阿里提出时序预测新模型 论文入选顶会ICML2022

本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.

给定一段时期的历史数据,AI能否准确预测天气变化、电网负荷需求、交通拥堵状况?这是个时序预测问题。阿里巴巴达摩院近期提出一种长时序预测的新模型FEDformer,精准度比业界最优方法提升14.8%以上,模型已应用于电网负荷预测。相关论文已被机器学习顶会ICML2022收录。

 

ICML是机器学习领域的顶级学术会议,2022年度会议将于本周日(7月17日)开幕。达摩院决策智能实验室的论文《FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting》关注了机器学习领域的经典问题:时序预测。

 

时间序列预测(Time Series Forecasting),通俗理解就是利用历史数据预测未来信息。预测可分为短期、中期和长期预测,需要预测的时间窗口越长,预测难度就越大。这项技术在气象、电力、零售、交通等诸多行业有广泛应用。

 

传统的时序预测模型一般采用LSTM、CNN等方法,精准度和使用场景都较为有限,无力处理大规模数据。近些年来,研究人员开始将transformer模型引入长时序预测,但效果仍不够理想,简单地说该模型核心中的注意力机制模块对时序数据不够敏感。

 

达摩院提出的长时序预测模型FEDformer,融合transformer和经典信号处理方法。比如,利用傅立叶/小波变换将时域信息拆解为频域信息,让transformer更好地学习长时序中的依赖关系。FEDformer也能排除干扰,具有更好的鲁棒性。其中专门设计了周期趋势项分解模块,通过多次分解以降低输入输出的波动,进一步提升预测精度。

 

 

达摩院FEDformer模型架构

 

实验证明,达摩院新模型在电力、交通、气象等6个标准数据集上均取得最佳纪录,预测精准度较此前业界最佳模型分别提升14.8%(多变量)和22.6%(单变量)。值得一提的是,该模型已走出实验室,在区域电网完成概念验证,明显提升电网负荷预测准确率。

 

 

达摩院FEDformer模型在6个数据集均取得最佳纪录

 

据了解,达摩院决策智能实验室旨在用数学建模来解决真实世界的复杂问题,其重点研究方向包括时序预测,今年刚在ICASSP’22 AIOps Challenge获得冠军。基于自研的时序预测、优化求解器MindOpt、安全强化学习等底层技术,达摩院打造的绿色能源AI,已逐步落地全国多家电网和发电企业,促进绿色能源消纳和电网安全运行。

Be First to Comment

发表评论

您的电子邮箱地址不会被公开。