Press "Enter" to skip to content

【人工智能】【Python】Matplotlib基础

本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.

Maplotlib

 

本文档由萌狼蓝天写于2022年7月24日

 

目录

(一)Matplotlib三层结构
(二)画布创建、图像绘制、图像显示
(三)图像画布设置、图像保存
(四)自定义x、y轴的刻度
(六)添加描述信息、一图多线、显示图例

图例图形风格设置参考表

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False  # 正常显示负号

 

(一)Matplotlib三层结构

容器层

canvas
figure
axes

辅助显示层

添加x轴、y轴描述,标题等内容

图像层

绘制什幺图像的声明

(二)画布创建、图像绘制、图像显示

 

# 创建画布
plt.figure()
x = [1,2,3,4,5] # x轴上数据
y = [3,5,8,13,21] # y轴上数据
plt.plot(x,y) # 绘制图像
plt.show() # 显示图像

 

 

(三)图像画布设置、图像保存

 

# 创建画布
plt.figure(figsize=(10,5),dpi=360)
# figsize设置宽高(物理),dpi设置像素(清晰度)。
# 上述语句 返回的是一个fig对象
# 【注意】plt.show() 会释放figure资源,如果在线上图像之后保存图片将只能保存空图片
x = [1,2,3,4,5] # x轴上数据
y = [3,5,8,13,21] # y轴上数据
plt.plot(x,y) # 绘制图像
plt.savefig("auto_create_test01.jpg") # 保存图像
plt.show() # 显示图像

 

 

import random
x = range(100)
y_a = [random.uniform(0,30) for i in x]
# 生成数的数量对应x,生成数的值为0-30之间的随机数
print(x)
print("---华丽的分割线---")
print(y_a)

 

range(0, 100)
---华丽的分割线---
[12.982672509679087, 4.148460810792916, 23.28235249294327, 21.87989699514037, 2.769903367325226, 25.81845792348358, 3.54269402963334, 2.585603726507065, 26.353567263372167, 20.1724515831709, 9.846906537087849, 18.642794021897725, 28.003744340329156, 16.872567782729124, 21.612800689540776, 11.990215915808118, 17.191944072247612, 14.599968428883773, 8.928751599348555, 28.84921690440148, 1.5811419916444414, 28.347437767253062, 4.1844970314337395, 1.4484554776084402, 23.746856993211154, 25.215123023800903, 8.308284357407098, 20.905033782595766, 1.7060361916369626, 25.824999733060757, 25.861418590294413, 18.934895151240344, 29.156472327174725, 19.73204522971468, 27.62189040636267, 4.0745889532346355, 0.8561484814978759, 16.990698526758948, 13.695538355532968, 19.102876219033302, 26.73750193106295, 8.874796595298546, 19.63252230758577, 5.410863374583021, 28.959501437890072, 13.141025987347465, 11.963738613483583, 10.134532811707164, 2.4713136683034986, 26.003968284802426, 14.971877506465844, 14.571620590922555, 29.08039067376321, 2.2940372824311894, 8.146485905161393, 0.7551511667468636, 25.783877538176437, 19.827089802343014, 6.316807614490154, 12.191817760896198, 29.265434441425686, 1.4430630147755286, 27.15559634706954, 25.33537321637355, 14.537826820603485, 14.752792676788385, 1.8704608188174754, 13.895073232049324, 22.79035528366605, 11.12232898307558, 5.16784304566163, 22.837175426537577, 4.0677013250654435, 27.975154486709634, 3.286664382643265, 10.632525108000943, 4.411311190562859, 10.723165062794324, 29.44814886086931, 20.408896064347594, 15.803205938537028, 16.523604028883916, 19.623136101583274, 4.321189078434246, 29.106159249131583, 10.836444462865161, 7.254473087449349, 2.884588234408815, 13.263596148346446, 17.293710076942403, 21.826173895085446, 29.465860746443976, 21.558510008254462, 13.979606990999239, 23.065135048263528, 6.406772645073375, 17.224958179811374, 23.067953124213787, 29.055332612173245, 0.046758792875690736]

 

plt.figure(figsize=(10,5),dpi=300)# 创建画布
plt.plot(x,y_a) # 绘画
plt.show() # 显示

 

 

(四)自定义x、y轴的刻度

plt.xticks(x,**kwargs) # x 表示要刻度的值
plt.yticks(y,**kwargs) # y 表示要刻度的值

x = range(100)
y_a = [random.uniform(0,50) for i in x]
plt.figure(figsize=(25,5),dpi=300)# 创建画布
plt.plot(x,y_a) # 绘画
# 构造x轴刻度标签
x_ticks_label = ["零点{}分".format(i) for i in x]
# 构造y轴刻度
y_ticks = range(60)
# 修改x、y轴刻度显示
plt.xticks(x[::5],x_ticks_label[::5])
plt.yticks(y_ticks[::5])
# ::5 意味着 从头到尾 每间隔5取
#【注意】第一个参数必须是数字,如果不是数字需要进行值的替换
plt.show()

 

 

(五)添加网格显示

 

x = range(100)
y_a = [random.uniform(0,50) for i in x]
plt.figure(figsize=(25,5),dpi=300)# 创建画布
plt.plot(x,y_a) # 绘画
# 构造x轴刻度标签
x_ticks_label = ["零点{}分".format(i) for i in x]
# 构造y轴刻度
y_ticks = range(60)
# 修改x、y轴刻度显示
plt.xticks(x[::5],x_ticks_label[::5])
plt.yticks(y_ticks[::5])
# ::5 意味着 从头到尾 每间隔5取
#【注意】第一个参数必须是数字,如果不是数字需要进行值的替换
plt.grid(True,linestyle="--",alpha=0.5) # 添加网格
# 第一个参数(boolean) 是否添加
# 第二个参数(linestyle) 曲线还是直线
# 第三个参数 (alpha)透明度
plt.show()

 

 

(六)添加描述信息、一图多线、显示图例

 

x = range(50)
y_a = [random.uniform(0,50) for i in x]
y_b = [random.uniform(0,50) for i in x]
plt.figure(figsize=(10,5),dpi=300)# 创建画布
plt.plot(x,y_a) # 绘画
plt.plot(x,y_b) # 绘画
x_ticks_label = ["零点{}分".format(i) for i in x]
y_ticks = range(60)
plt.xticks(x[::5],x_ticks_label[::5])
plt.yticks(y_ticks[::5])
plt.grid(True,linestyle="--",alpha=0.5) # 添加网格
# 添加描述
plt.title("Just Play",fontsize=24)
plt.xlabel("时间")
plt.ylabel("温度")
# 显示图例
plt.plot(x,y_a,color="r",linestyle="-",label="A") # 绘画
plt.plot(x,y_b,color="b",linestyle="--",label="B") # 绘画
plt.legend(loc="upper right")# 显示图例必须在绘制时设置好
plt.show()

 

 

图例图形风格设置参考表

 

 

颜色字符对应颜色
r红色
g绿色
b蓝色
w白色
c青色
m洋红色
y黄色
k黑色

 

 

风格字符对应风格
实线
虚线
-.点划线
:点虚线
留空、空格

 

(七)多坐标系绘制

 

x = range(50)
y_a = [random.uniform(0,50) for i in x]
y_b = [random.uniform(0,50) for i in x]
# plt.figure(figsize=(10,5),dpi=300)# 创建画布
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(20,5),dpi=300)
x_ticks_label = ["零点{}分".format(i) for i in x]
y_ticks = range(60)
# plt.xticks(x[::5],x_ticks_label[::5])
# plt.yticks(y_ticks[::5])
axes[0].set_xticks(x[::5])
axes[0].set_yticks(y_ticks[::5])
axes[1].set_xticks(x[::5])
axes[1].set_yticks(y_ticks[::5])
axes[1].set_xticklabels(x_ticks_label[::5])
# 添加描述
# plt.title("Just Play",fontsize=24)
axes[0].set_title("Just Play A",fontsize=24)
axes[1].set_title("Just Play B",fontsize=24)
# plt.xlabel("时间")
# plt.ylabel("温度")
axes[0].set_ylabel("摄氏度")
axes[1].set_ylabel("华氏度")
axes[0].set_xlabel("21日数据")
axes[1].set_xlabel("22日数据")
# 显示图例
# plt.plot(x,y_a,color="r",linestyle="-",label="A") # 绘画
# plt.plot(x,y_b,color="b",linestyle="--",label="B") # 绘画
axes[0].plot(x,y_a,color="r",linestyle="-",label="A")
axes[1].plot(x,y_b,color="b",linestyle="--",label="B")
# plt.legend(loc="upper right")# 显示图例必须在绘制时设置好
axes[0].legend(loc="upper right")# 显示图例必须在绘制时设置好
axes[1].legend(loc="upper right")# 显示图例必须在绘制时设置好
# 添加网格
# plt.grid(True,linestyle="--",alpha=0.5) # 添加网格
axes[0].grid(True,linestyle="--",alpha=0.5)
axes[1].grid(True,linestyle="-.",alpha=1)
plt.show()

 

 

(八)常见图形绘制

 

1.绘制数学函数图像

 

import numpy as np 
# 准备数据
x = np.linspace(-10,10,1000) # 从-10到10 生成1000个数据(数据越多,线条越顺畅自然)
y = np.sin(x)
# 创建画布
plt.figure(figsize=(5,2.5),dpi=300)
# 绘制函数图像
plt.plot(x,y)
# 添加网格显示
plt.grid()
# 显示图像
plt.show()

 

 

2.散点图

 

# 数据准备
import random
x = range(30)
y = [random.uniform(30,60) for i in x]
# 创建画布
plt.figure(figsize=(10,5),dpi=300)
# 图像绘制
plt.scatter(x,y)
# 图像显示
plt.show()

 

 

3.柱状图

 

data_name = ['我是路人甲','山哥之王','山鸡之王','山崖传说','神秘姥爷','嘎腰子传说','嘤呜','我直呼好家伙',"乌拉","一拳一个"]
data_love = [1684,8664,8469,6468,5381,6584,1466,6458,4476,6584]
x = range(len(data_name))
y = data_love
plt.figure(figsize=(15,3),dpi=100)
plt.bar(x,y,width=0.5,color=["r","g","b","m","y","c","k"],align="center") # 对齐方式有edge和center两种
plt.xticks(x,data_name,fontsize=12)
plt.show()

 

 

4.直方图

 

x =  np.random.normal(50,10,1000) # (均值,标准差,个数)
y = range(50)
plt.figure(figsize=(15,3),dpi=100)
plt.hist(x,bins=50,density=True, color='g', alpha=1)
plt.show()

 

 

5.饼状图

 

x =  [random.randint(0,10) for i in range(5)] # 随机生成5个数,每个数的值在0-9之间
plt.figure(figsize=(15,3),dpi=100)
plt.pie(x) # x:数量,会根据数量自动计算百分比  labels:每部分的名城 autopct:占比显示指定 %1.2f%% colors:每部分的颜色
plt.show()

 

 

萌狼蓝天的博客园

Be First to Comment

发表评论

您的电子邮箱地址不会被公开。