Press "Enter" to skip to content

TFrecord写入与读取

本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.

Protocol buffers are Google's language-neutral, platform-neutral, extensible mechanism for serializing structured data.

 

Protocol buffers是由Google设计的无关程序语言、平台的、具有可扩展性机制的序列化数据结构。

 

The tf.train.Example message (or protosun) is a flexible message type that represents a {"string": value} mapping. It is designed for use with TensorFlow and is used throughout the higher-level APIs such as TFX .

 

tf.traom.Example是一种表示{“string”:value}映射关系的灵活的消息类型。它被设计用于TensorFlow以及更加高级的API。

 

写入

 

tf.train.Example

 

一个tf.train.Example的实例是构建的是数个{”string“: tf.train.Feature}映射。

 

其中,tf.train.Feature可以是以下三种,其他类型的数据格式可以通过一个或多个Feature组合描述:

tf.train.BytesList
tf.train.FloatList
tf.train.Int64List

模板

 

import tensorflow as tf
with tf.io.TFRecordWriter("train.tfrecords","GZIP") as writer:
    for i in range(200): # Assume there are 200 records
        example_proto = tf.train.Example(
            features=tf.train.Features(
                feature= {
                    'feature0':        
                        tf.train.Feature(float_list=tf.train.int64List(value=feature0)),
                    'feature1': 
                        tf.train.Feature(float_list=tf.train.FloatList(value=feature1)),
                    'feature2': 
                        tf.train.Feature(float_list=tf.train.BtyesList(value=feature2)),
                    'label':
                        tf.train.Feature(float_list=tf.train.int64List(value=[label])),
                }
            )
        )
        writer.write(example_proto.SerializeToString())

 

读取

 

tf.io.parse_single_example 和 tf.io.parse_example

 

One might see performance advantages by batching Example protos with parse_example instead of using this function directly.

 

对Example protos分批并使用parse_example会比直接使用parse_single_example有性能优势。

 

模板

 

# with map_func using tf.io.parse_single_example
def map_func(example):
    # Create a dictionary describing the features.
    feature_description = {
        'feature0': tf.io.FixedLenFeature([len_feature0], tf.int64),
        'feature1': tf.io.FixedLenFeature([len_feature1], tf.float32),
        'feature2': tf.io.FixedLenFeature([len_feature2], tf.int64),
        'label': tf.io.FixedLenFeature([1], tf.int64),
    }
    parsed_example = tf.io.parse_single_example(example, features=feature_description)
    feature0 = parsed_example["feature0"]
    feature1 = parsed_example["feature1"]
    feature2 = parsed_example["feature2"]
    label = parsed_example["label"]
    return image, label
raw_dataset = tf.data.TFRecordDataset("train.tfrecords","GZIP")
parsed_dataset = raw_dataset.map(map_func=map_func)
parsed_dataset = raw_dataset.batch(BATCH_SIZE)

 

以下代码和前者的区别在于map_func中使用tf.io.parse_example替换tf.io.parse_single_example,并在调用map方法前先调用batch方法。

 

# with map_func using tf.io.parse_example
def map_func(example):
    # Create a dictionary describing the features.
    feature_description = {
        'feature0': tf.io.FixedLenFeature([len_feature0], tf.int64),
        'feature1': tf.io.FixedLenFeature([len_feature1], tf.float32),
        'feature2': tf.io.FixedLenFeature([len_feature2], tf.int64),
        'label': tf.io.FixedLenFeature([1], tf.int64),
    }
    parsed_example = tf.io.parse_example(example, features=feature_description)
    
    # features can be modified here
    feature0 = parsed_example["feature0"]
    feature1 = parsed_example["feature1"]
    feature2 = parsed_example["feature2"]
    label = parsed_example["label"]
    return image, label
raw_dataset = tf.data.TFRecordDataset(["./1.tfrecords", "./2.tfrecords"])
raw_dataset = raw_dataset.batch(BATCH_SIZE)
parsed_dataset = raw_dataset.map(map_func=map_func)

 

 

以上两张图分别时使用带有parse_single_example和parse_example的map_func在训练中的性能对比,后者(parse_example)明显性能更优秀。

 

不定长数据的读写 RaggedFeature

 

对于不定长且未padding的数据,写入过程中和定长数据没有区别,但在读取过程中需要使用tf.io.RaggedFeature替代tf.io.FixedLenFeature。

 

def map_func(example):
    # Create a dictionary describing the features.
    feature_description = {
        'feature': tf.io.RaggedFeature(tf.float32),
        'label': tf.io.FixedLenFeature([1], tf.int64),
    }
    parsed_example = tf.io.parse_example(example, features=feature_description)
    # feature = parsed_example["feature"]
    feature = parsed_example["feature"].to_tensor(shape=[1,100])
    label = parsed_example["label"]
    return feature, label
raw_dataset = tf.data.TFRecordDataset("train_unpadding.tfrecords").batch(1000)
parsed_dataset = raw_dataset.map(map_func=map_func)

 

下图对比了是否对不定长数据进行padding分别在压缩和未压缩的情况下的文件大小。

 

Be First to Comment

发表回复

您的电子邮箱地址不会被公开。