Press "Enter" to skip to content

神经网络参数量和计算量,神经网络是参数模型吗

本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.

 

神经网络参数如何确定

 

神经网络各个网络参数设定原则:①、网络节点 网络输入层神经元节点数就是系统的特征因子(自变量)个数,输出层神经元节点数就是系统目标个数。隐层节点选按经验选取,一般设为输入层节点数的75%。

 

如果输入层有7个节点,输出层1个节点,那幺隐含层可暂设为5个节点,即构成一个7-5-1BP神经网络模型。在系统训练时,实际还要对不同的隐层节点数4、5、6个分别进行比较,最后确定出最合理的网络结构。

 

②、初始权值的确定 初始权值是不应完全相等的一组值。已经证明,即便确定 存在一组互不相等的使系统误差更小的权值,如果所设Wji的的初始值彼此相等,它们将在学习过程中始终保持相等。

 

故而,在程序中,我们设计了一个随机发生器程序,产生一组一0.5~+0.5的随机数,作为网络的初始权值。

 

③、最小训练速率 在经典的BP算法中,训练速率是由经验确定,训练速率越大,权重变化越大,收敛越快;但训练速率过大,会引起系统的振荡,因此,训练速率在不导致振荡前提下,越大越好。

 

因此,在DPS中,训练速率会自动调整,并尽可能取大一些的值,但用户可规定一个最小训练速率。该值一般取0.9。④、动态参数 动态系数的选择也是经验性的,一般取0.6~0.8。

 

⑤、允许误差 一般取0.001~0.00001,当2次迭代结果的误差小于该值时,系统结束迭代计算,给出结果。⑥、迭代次数 一般取1000次。

 

由于神经网络计算并不能保证在各种参数配置下迭代结果收敛,当迭代结果不收敛时,允许最大的迭代次数。⑦、Sigmoid参数该参数调整神经元激励函数形式,一般取0.9~1.0之间。⑧、数据转换。

 

在DPS系统中,允许对输入层各个节点的数据进行转换,提供转换的方法有取对数、平方根转换和数据标准化转换。扩展资料:神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。

 

主要的研究工作集中在以下几个方面:1.生物原型从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

 

2.建立模型根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

 

3.算法在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

 

神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。

 

参考资料:百度百科-神经网络(通信定义)

 

神经网络权值怎幺确定?

 

神经网络的权值是通过对网络的训练得到的 A8U神经网络 。如果使用MATLAB的话不要自己设定,newff之后会自动赋值。也可以手动:{}=;{}=。一般来说输入归一化,那幺w和b取0-1的随机数就行。

 

神经网络的权值确定的目的是为了让神经网络在训练过程中学习到有用的信息,这意味着参数梯度不应该为0。

 

参数初始化要满足两个必要条件:1、各个激活层不会出现饱和现象,比如对于sigmoid激活函数,初始化值不能太大或太小,导致陷入其饱和区。

 

2、各个激活值不为0,如果激活层输出为零,也就是下一层卷积层的输入为零,所以这个卷积层对权值求偏导为零,从而导致梯度为0。扩展资料:神经网络和权值的关系。

 

在训练智能体执行任务时,会选择一个典型的神经网络框架,并相信它有潜力为这个任务编码特定的策略。注意这里只是有潜力,还要学习权重参数,才能将这种潜力变化为能力。

 

受到自然界早成行为及先天能力的启发,在这项工作中,研究者构建了一个能自然执行给定任务的神经网络。也就是说,找到一个先天的神经网络架构,然后只需要随机初始化的权值就能执行任务。

 

研究者表示,这种不用学习参数的神经网络架构在强化学习与监督学习都有很好的表现。其实如果想象神经网络架构提供的就是一个圈,那幺常规学习权值就是找到一个最优点(或最优参数解)。

 

但是对于不用学习权重的神经网络,它就相当于引入了一个非常强的归纳偏置,以至于,整个架构偏置到能直接解决某个问题。但是对于不用学习权重的神经网络,它相当于不停地特化架构,或者说降低模型方差。

 

这样,当架构越来越小而只包含最优解时,随机化的权值也就能解决实际问题了。如研究者那样从小架构到大架构搜索也是可行的,只要架构能正好将最优解包围住就行了。参考资料来源:百度百科-神经网络。

 

哪些神经网络可以用在图像特征提取上

 

BP神经网络、离散Hopfield网络、LVQ神经网络等等都可以。

 

1.BP(BackPropagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

 

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

 

BP神经网络模型拓扑结构包括输入层(input)、隐层(hiddenlayer)和输出层(outputlayer)。

 

2.Hopfiled神经网络是一种递归神经网络,由约翰·霍普菲尔德在1982年发明。Hopfield网络是一种结合存储系统和二元系统的神经网络。

 

它保证了向局部极小的收敛,但收敛到错误的局部极小值(localminimum),而非全局极小(globalminimum)的情况也可能发生。Hopfiled网络也提供了模拟人类记忆的模型。

 

3.LVQ神经网络由三层组成,即输入层、隐含层和输出层,网络在输入层与隐含层间为完全连接,而在隐含层与输出层间为部分连接,每个输出层神经元与隐含层神经元的不同组相连接。

 

隐含层和输出层神经元之间的连接权值固定为1。输入层和隐含层神经元间连接的权值建立参考矢量的分量(对每个隐含神经元指定一个参考矢量)。在网络训练过程中,这些权值被修改。

 

隐含层神经元(又称为Kohnen神经元)和输出神经元都具有二进制输出值。

 

当某个输入模式被送至网络时,参考矢量最接近输入模式的隐含神经元因获得激发而赢得竞争,因而允许它产生一个“1”,而其它隐含层神经元都被迫产生“0”。

 

与包含获胜神经元的隐含层神经元组相连接的输出神经元也发出“1”,而其它输出神经元均发出“0”。产生“1”的输出神经元给出输入模式的类,由此可见,每个输出神经元被用于表示不同的类。

 

BP神经网络中初始权值和阈值的设定

 

1、首先需要了解BP神经网络是一种多层前馈网络。2、以看一下在matlab中BP神经网络的训练函数,有梯度下降法traingd,弹性梯度下降法trainrp,自适应lr梯度下降法traingda等。

 

3、在matlab中命令行窗口中定义输入P,输出T,·通过“newff(minmax(P),[5,1]构建BP神经网络,“[net,tr]=train(net,P,T);”进行网络训练,“sim(net,P)”得到仿真预测值。

 

4、在命令行窗口按回车键之后,可以看到出现结果弹窗,最上面的NeuralNetwork下面依次代表的是“输入、隐含层、输出层、输出”,隐含层中有5个神经元。

 

5、Progress下面的Epoch代表迭代次数,Gradient代表梯度,VaildationChecks代表有效性检查,最后的绿色对勾代表性能目标达成。

 

6、最后将实际曲线和预测曲线绘制出来,可以看到使用BP神经网络预测的结果曲线基本和实际输出曲线一致。

 

BP神经网络一般初始权值和阀值是多少?

 

 

初始的权值和偏差一般是在0-1之间,随机选取某一0-1之间的值作为某一权值或偏差的值原因在于:1、数据预处理阶段会将所有的数据规范化到0-1之间,并且神经网络的输出也是0-1之间的向量,因此其中的网络结点值也应位于0-1中2、随机初始化的优势在于可有效避免梯度消失或梯度爆炸的问题,增加网络的稳定性。

 

matlab BP神经网络中,最后算出的MSE值应该为多少?

 

表示对网络训练结果的测试。Mse的意思是均方误差,当然越小越好。但这和你有多少训练样本,有多少训练课程有很大关系。这个没有标准,每个人都知道零偏差是最好的。

 

但是,神经网络本身的致命缺陷被消除了,因为它是对解析表达式的迭代收敛逼近,所以不可能达到零误差。这样只能根据用户的工程技术要求来判断,误差指标应该小于工程误差范围啊。但对于科学研究来说,只能具体分析。

 

量化没有明确或绝对的意义。扩展资料:BP神经网络的计算过程包括正演计算过程和反演计算过程。在正向传播过程中,输入模式从输入层到隐藏单元层,再到输出层进行逐层处理。

 

每一层神经元的状态只影响下一层神经元的状态。如果在输出层不能得到想要的输出,则误差信号将沿原连接路径反向传播返回,并对每个神经元的权值进行修改,使误差信号最小化。参考资料:百度百科-BP神经网络。

 

BP神经网络连接权值如何确定

 

确认方法:统计学认为,在统计中计算平均数等指标时,对各个变量值具有权衡轻重作用的数值就称为权数。

 

例子:求下列数串的平均数3、4、3、3、3、2、4、4、3、3、一般求法为(3+4+3+3+3+2+4+4+3+3)/10=3.2加权求法为(6*3+3*4+2)/10=3.2其中3出现6次,4出现3次,2出现1次.6、3、1就叫权数。

 

这种方法叫加权法。一般说的平均数,就是把所有的数加起来,再除以这些数的总个数。

 

表示为:(p1+p2+p3+…..+pn)/n;但有的数据记录中有一些相同的数据,在计算的时候,那一个数有几个相同数,就把这个数乘上几,这个几,就叫权,加权,就是乘上几后再加。

 

平均数还是要除以总个数。

 

还是以上面的各个数为例:它们每个数都有一些相同数,表示为:k1,k2,k3…….kn;加权平均的公式是:(k1p1+k2p2+k3p3+……knpn)/(k1+k2+k3+…..kn)。

 

神经网络算法中,参数的设置或者调整,有什幺方法可以采用

 

若果对你有帮助,请点赞。神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。

 

现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。

 

然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。

 

而在寻解过程中,步长太大,就会搜索得不仔细,可能跨过了优秀的解,而步长太小,又会使寻解过程进行得太慢。因此,步长设置适当非常重要。

 

学习率对原步长(在梯度下降法中就是梯度的长度)作调整,如果学习率lr=0.1,那幺梯度下降法中每次调整的步长就是0.1*梯度,而在matlab神经网络工具箱里的lr,代表的是初始学习率。

 

因为matlab工具箱为了在寻解不同阶段更智能的选择合适的步长,使用的是可变学习率,它会根据上一次解的调整对目标函数带来的效果来对学习率作调整,再根据学习率决定步长。

 

机制如下:ifnewE2/E2>maxE_inc%若果误差上升大于阈值lr=lr*lr_dec;%则降低学习率elseifnewE2

 

祝学习愉快。

 

Hopfield神经网络

 

 

Hopfield神经网络(HopfieldNeuralNetwork,简称HNN),是美国加州理工学院物理学家Hopfield教授1982年提出的一种反馈型神经网络,信号不但能向前,还能向后传递(输出信号又反馈回来变成输入信号。

 

而前面所介绍的BP网络是一种前馈网络,信号只能向前传递)。他在Hopfield神经网络中引入了“能量函数”概念,使网络的运行稳定性的判断有了可靠依据。

 

Hopfield神经网络的权值不是经过反复学习获得的,而是按照一定规则计算出来的,一经确定就不再改变,而Hopfield神经网络的状态(输入、输出信号)会在运行过程中不断更新,网络演变到稳态时各神经元的状态便是问题的解。

 

1985年,Hopfield和Tank研制了电子线路来模拟Hopfield网络,较好地解决了优化组合问题中着名的TSP(旅行商)问题,找到了最佳解的近似解,为神经网络的复兴建立了不可磨灭的功劳。

 

对于地球物理反演这种最优化问题,可以很方便地用Hopfield网络来实现。

 

反演的目标函数等于Hopfield网络的“能量函数”,网络的状态(输入、输出信号)就是模型的参数,网络演变到稳态时各神经元的输入输出值便是反演问题的解。

 

Hopfield神经网络分为离散型和连续型两种网络模型,分别记为DHNN(DiscreteHopfieldNeuralNetwork)和CHNN(ContinuesHopfieldNeuralNetwork)。

 

在前馈型网络中无论是离散的还是连续的,一般均不考虑输入与输出之间在时间上的滞后性,而只表达两者之间的映射关系。

 

但在连续Hopfield神经网络中,考虑了输出与输入之间的延迟因素,因此需要用微分方程或差分方程来描述网络的动态数学模型。

 

8.5.4.1离散Hopfield神经网络离散Hopfield神经网络的拓扑结构如图8.12所示。这是一种单层全反馈网络,共有n个神经元。

 

图8.12的特点是任意一个神经元的输出xi只能是0或1,均通过连接权wij反馈至所有神经元j作为它的输入xj。

 

也就是说,每个神经元都通过连接权接收所有其他神经元输出反馈的信息,这样每一个神经元的输出都受其他所有神经元输出的控制,从而每个神经元的输出相互制约。每个神经元均设一个阀值Ti,以反映对输入噪声的控制。

 

图8.12离散Hopfield神经网络的拓扑结构[8]8.5.4.1.1网络的状态离散Hopfield神经网络任意一个神经元的输出xj称为网络的状态,它只能是0或1。

 

变化规律由下式规定:xj=f(netj)j=1,2,…,n(8.33)f()为转移函数,离散Hopfield神经网络的转移函数常用符号函数表示:地球物理反演教程其中netj为净输入:地球物理反演教程对离散Hopfield神经网络,一般有wij=0,wij=wji(8.36)这说明神经元没有自反馈,两个神经元的相互控制权值相同。

 

离散Hopfield神经网络稳定时,每个神经元的状态都不再改变。

 

此时的稳定状态就是网络的输出,记为地球物理反演教程8.5.4.1.2网络的异步工作方式它是一种串行方式,网络运行时每次只改变一个神经元的状态,其他神经元的状态保持不变。

 

8.5.4.1.3网络的同步工作方式它是一种并行同步工作方式,所有神经元同时调整状态。8.5.4.1.4网络的吸引子网络达到稳定状态时的输出X,称为网络的吸引子。

 

8.5.4.1.5网络的能量函数网络的能量函数定义为地球物理反演教程以上是矩阵形式,考虑无自反馈的具体展开形式为地球物理反演教程当网络收敛到稳定状态时,有ΔE(t)=E(t+1)-E(t)=0(8.40)或者说:地球物理反演教程理论证明了如下两个定理[8]:定理1.对于DHNN,若按异步方式调整网络状态,且连接权矩阵W为对称阵,则对任意初始状态,网络都能最终收敛到一个吸引子。

 

定理2.对于DHNN,若按同步方式调整网络状态,且连接权矩阵W为非负定对称阵,则对任意初始状态,网络都能最终收敛到一个吸引子。

 

8.5.4.1.6利用离散Hopfield神经网络进行反演在地球物理线性反演中,设有如下目标函数:地球物理反演教程对比式(8.38)和式(8.42)发现它们在形式上有很多相似之处。

 

王家映的《地球物理反演理论》一书中,直接用式(8.42)和式(8.38)类比,公式显得复杂。

 

本书设立一个新的目标函数ϕ,公式将会变得简洁得多:地球物理反演教程再对比式(8.38)和式(8.43),发现它们完全一样,只要设:X(t)=m,W=GTG,T=GTd(8.44)注意:式(8.43)的目标函数ϕ的极大值解就是原来目标函数φ极小值的解,它们是同解的。

 

如果待反演的模型参数是离散的0或1值,那幺可以直接应用离散Hopfield神经网络进行反演。

 

但是一般它们都是连续的数值,所以还要将模型参数表示为二进制[1]:地球物理反演教程其中:Bij=0或1为二进制数;D和U为整数,取决于模型参数的大小和精度。

 

这样第i个模型参数就用Bij表示为了二进制数。将式(8.45)代入目标函数式(8.43)后再与离散Hopfield神经网络的能量函数进行对比,确立新的等价关系后,就可以进行反演了。

 

这个新的等价关系式可以参见王家映的《地球物理反演理论》[1]一书。反演的过程大致如下:(1)根据模型参数的大小范围和精度确定D和U,将初始输入模型参数变为二进制数。

 

设立一个拟合精度标准,如相对均方差ε,设定一个最大迭代次数N(所有神经元的输出都修改一次称为一次迭代)。(2)利用数据方程的G矩阵(在一般情况下需用偏导数矩阵获得)计算网络的权值和阀值。

 

(3)将二进制初始模型参数输入网络并运行网络。(4)把每次迭代网络输出值变为十进制模型参数,进行正演计算。如果拟合满足精度ε,则停止网络运行并输出反演结果。

 

否则重复(2)~(4)步直到满足精度或达到最多迭代次数N为止。

 

在一般情况下,地球物理数据方程的G矩阵是无法用解析式写出的,需要用偏导数矩阵获得,它是依赖于输入参数的,因此网络的每次迭代都要重新计算偏导数矩阵。这个计算量是很大的。因此他的反演过程和最小二乘法相似。

 

此外,用Hopfield神经网络进行反演同样有可能陷入局部极值点(吸引子)。因此同样受初始模型的影响,需要尽量让初始模型接近真实模型。

 

8.5.4.2连续Hopfield神经网络(CHNN)[8]1984年,Hopfield把离散Hopfield神经网络发展为连续Hopfield神经网络。

 

但所有神经元都同步工作,各输入输出量为随时间变化的连续的模拟量,这就使得CHNN比DHNN在信息处理的并行性、实时性方面更接近实际的生物神经网络工作机理。因此利用CHNN进行地球物理反演更加方便。

 

CHNN可以用常系数微分方程来描述,但用模拟电子线路来描述,则更加形象直观,易于理解。图8.13为连续Hopfield神经网络的拓扑结构[8]。

 

图8.13连续Hopfield神经网络的拓扑结构[8]图8.13中每个神经元用一个运算放大器模拟,神经元的输入输出用放大器的输入输出电压表示,连接权用电导表示。

 

每个放大器有一个正向输出和一个反向输出,分别表示兴奋和抑制。每个神经元还有一个用于设置激活电平的外界输入偏置电流作为阀值。这里由于篇幅关系不再累述。感兴趣的读者可以参考其他文献。

Be First to Comment

发表回复

您的电子邮箱地址不会被公开。