Press "Enter" to skip to content

神经网络和pid有什幺区别,基于神经网络的pid控制

本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.

 

PID控制的原理是什幺?

 

 

PID回路是要自动实现一个操作人员用量具和控制旋钮进行的工作,这个操作人员会用量具测系统输出的结果,然后用控制旋钮来调整这个系统的输入;直到系统的输出在量具上显示稳定的需求的结果,在旧的控制文档里,这个过程叫做“复位”行为,量具被称为“测量”,需要的结果被称为“设定值”而设定值和测量之间的差别被称为“误差”。

 

一个控制回路包括三个部分:1、系统的传感器得到的测量结果2、控制器作出决定3、通过一个输出设备来作出反应控制器从传感器得到测量结果,然后用需求结果减去测量结果来得到误差。

 

然后用误差来计算出一个对系统的纠正值来作为输入结果,这样系统就可以从它的输出结果中消除误差。在一个PID回路中,这个纠正值有三种算法,消除目前的误差,平均过去的误差,和透过误差的改变来预测将来的误差。

 

比如说,假如利用水箱在为植物提供水,水箱的水需要保持在一定的高度。可以用传感器来检查水箱里水的高度,这样就得到了测量结果。

 

控制器会有一个固定的用户输入值来表示水箱需要的水面高度,假设这个值是保持65%的水量。控制器的输出设备会连在由马达控制的水阀门上。打开阀门就会给水箱注水,关上阀门就会让水箱里的水量下降。

 

这个阀门的控制信号就是控制变量。PID控制器可以用来控制任何可被测量及可被控制变量。比如,它可以用来控制温度、压强、流量、化学成分、速度等等。汽车上的巡航定速功能就是一个例子。

 

一些控制系统把数个PID控制器串联起来,或是连成网络。这样的话,一个主控制器可能会为其他控制输出结果。一个常见的例子是马达的控制。控制系统会需要马达有一个受控的速度,最后停在一个确定的位置。

 

可由一个子控制器用来管理速度,但是这个子控制器的速度是由控制马达位置的主控制器来管理的。应用在自动控制发展的早期,用机械设备来实现PID控制,是由杠杆、弹簧、阻尼及质量组成,多半会用压缩气体驱动。

 

气动控制器还一度是工业上的标准。电子的类比控制器可以用晶体管、真空管、电容器及电阻器组成。

 

许多复杂的电子系统中常会包括PID控制,例如磁盘的读写头定位、电源供应器的电源条件、甚至是现代地震仪的运动侦测线路。现代电子控制器已大幅的被这些利用单芯片或FPGA来实现的数位控制器所取代。

 

现代工业使用的PID控制器多半会用PLC或有安装面板的数位控制器来实现。软件实现的好处是相对低廉,配合PID实现方式调整的灵敏度很大。在工业锅炉、塑胶射出机械、烫金机及包装行业中都会用到PID控制。

 

变化的电压输出可以用PWM来实现,也就是固定周期,依要输出的量去调整周期中输出高电势的时间。

 

对于数位系统,其时间比例有可能是离散的,例如周期是二秒,高电势时间设定单位为0.1秒,表示可以分为20格,精度5%,因此存在一量化误差,但只要时间分辨率够高,就会有不错的效果。

 

pid通俗易懂的解释是什幺?

 

PID是一种很常见的控制算法 AI爱发猫 。在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

 

它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。其中P意为比例,I意为积分,D意为微分。

 

扩展资料:Pid的控制原理:1、比例环节比例控制作用的大小除与偏差有关之外,还取决于比例系数的大小。比例系数越小,控制作用越小,系统响应越慢。反之,比例系数越大,控制作用越强,则系统响应越快。

 

2、积分环节积分环节的作用,主要用于消除静差提高系统的无差度。积分作用的强弱,取决于积分时间常数Ti,Ti越大积分作用越弱,反之则积分作用越强。

 

3、微分环节微分环节的作用能反映偏差信号的变化趋势(变化速率),且可以在偏差信号的值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,从而达到减小调节时间的效果。

 

积分控制作用的引入虽然可以消除静差,但是降低了系统的响应速度,特别是对于具有较大惯性的被控对象,用PI控制器很难得到很好的动态调节品质,系统会产生较大的超调和振荡。参考资料来源:百度百科-PID算法。

 

PID是什幺意思?

 

工程控制和数学物理方面PID:一个数学物理术语。PID由8位端口优先级加端口号组成,端口号占低位,默认端口号优先级128。

 

PID的原理和特点:在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

 

PID控制器问世至今已有近70年历史,其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。扩展资料:一、PID控制原理:本系统通过摆杆(辊)反馈的位置信号实现同步控制。

 

收线控制采用实时计算的实际卷径值,通过卷径的变化修正PID前馈量,可以使整个系统准确、稳定运行。

 

二、PID系统特点:1、主驱动电机速度可以通过电位器来控制,把S350设置为SVC开环矢量控制,将模拟输出端子FM设定为运行频率,从而给定收卷用变频器的主速度。

 

2、收卷用S350变频器的主速度来自放卷(主驱动)的模拟输出端口。摆杆电位器模拟量信号通过CI通道作为PID的反馈量。S350的频率源采用主频率Ⅵ和辅助频率源PID叠加的方式。

 

通过调整运行过程PID参数,可以获得稳定的收放卷效果。3、本系统启用逻辑控制和卷径计算功能,能使系统在任意卷径下平稳启动,同时两组PID参数可确保生产全程摆杆控制效果稳定。

 

参考资料来源:百度百科-PID。

 

PID控制器具体工作原理

 

这些都是自动控制系统所涉及的概念。

 

1、首先说明,PID调节单元接收与输出的都是电信号;2、自动控制技术,综合了【给定单元】、【调节单元】、【输出与执行单元】、【测量单元】、【反馈单元】等,基本原理是:给定单元提供设定控制目标,调节单元比较给定与反馈信号的差别并进行PID运算(比例、积分、微分)最后输出控制信号,输出与执行单元指用前面的控制信号转换为实际设备的物理量输出,测量单元检测物理量实际值,反馈单元将检测到的信号进行处理转换再反馈到调节单元,如此构成【闭环】自动调节控制系统;3、物理量-电量的转换是在测量单元完成的,电量-物理量的转换是在输出与执行单元完成的;4、结合实例就说来话长了,恐怕要给你一篇论文啦,呵呵,即便是要讲清楚PID调节器,也要上千字才行啊。

 

补充:各个单元都可以求出【传递函数】,须用到【拉普拉斯变换】的知识。传递函数的作用就是从物理事物建立起相应的【数学模型】,然后通过数学手段去分析、研究它。

 

什幺是PID调节器,并举例说明P、I、D的调节作用。

 

工业生产过程中,对于生产装置的温度、压力、流量、液位等工艺变量常常要求维持在一定的数值上,或按一定的规律变化,以满足生产工艺的要求。

 

PID控制器是根据PID控制原理对整个控制系统进行偏差调节,从而使被控变量的实际值与工艺要求的预定值一致。

 

不同的控制规律适用于不同的生产过程,必须合理选择相应的控制规律,否则PID控制器将达不到预期的控制效果。

 

PID控制器(ProportionIntegrationDifferentiation.比例-积分-微分控制器),由比例单元P、积分单元I和微分单元D组成。

 

通过Kp,Ki和Kd三个参数的设定。PID控制器主要适用于基本线性和动态特性不随时间变化的系统。PID控制器是一个在工业控制应用中常见的反馈回路部件。

 

这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。

 

和其他简单的控制运算不同,PID控制器可以根据历史数据和差别的出现率来调整输入值,这样可以使系统更加准确,更加稳定。

 

可以通过数学的方法证明,在其他控制方法导致系统有稳定误差或过程反复的情况下,一个PID反馈回路却可以保持系统的稳定。

 

一个控制回路包括三个部分:系统的传感器得到的测量结果控制器作出决定通过一个输出设备来作出反应控制器从传感器得到测量结果,然后用需求结果减去测量结果来得到误差。

 

然后用误差来计算出一个对系统的纠正值来作为输入结果,这样系统就可以从它的输出结果中消除误差。在一个PID回路中,这个纠正值有三种算法,消除目前的误差,平均过去的误差,和透过误差的改变来预测将来的误差。

 

比如说,假如一个水箱在为一个植物提供水,这个水箱的水需要保持在一定的高度。一个传感器就会用来检查水箱里水的高度,这样就得到了测量结果。

 

控制器会有一个固定的用户输入值来表示水箱需要的水面高度,假设这个值是保持65%的水量。控制器的输出设备会连在一个马达控制的水阀门上。打开阀门就会给水箱注水,关上阀门就会让水箱里的水量下降。

 

这个阀门的控制信号就是我们控制的变量,它也是这个系统的输入来保持这个水箱水量的固定。PID控制器可以用来控制任何可以被测量的并且可以被控制的变量。

 

比如,它可以用来控制温度,压强,流量,化学成分,速度等等。汽车上的巡航定速功能就是一个例子。一些控制系统把数个PID控制器串联起来,或是链成网络。这样的话,一个主控制器可能会为其他控制输出结果。

 

一个常见的例子是马达的控制。我们会常常需要马达有一个控制的速度并且停在一个确定的位置。这样呢,一个子控制器来管理速度,但是这个子控制器的速度是由控制马达位置的主控制器来管理的。

 

连合和串联控制在化学过程控制系统中是很常见的。PID是以它的三种纠正算法而命名的。这三种算法都是用加法调整被控制的数值。而实际上这些加法运算大部分变成了减法运算因为被加数总是负值。

 

这三种算法是:比例-来控制当前,误差值和一个负常数P(表示比例)相乘,然后和预定的值相加。P只是在控制器的输出和系统的误差成比例的时候成立。这种控制器输出的变化与输入控制器的偏差成比例关系。

 

比如说,一个电热器的控制器的比例尺范围是10°C,它的预定值是20°C。

 

那幺它在10°C的时候会输出100%,在15°C的时候会输出50%,在19°C的时候输出10%,注意在误差是0的时候,控制器的输出也是0。

 

积分-来控制过去,误差值是过去一段时间的误差和,然后乘以一个负常数I,然后和预定值相加。I从过去的平均误差值来找到系统的输出结果和预定值的平均误差。

 

一个简单的比例系统会振荡,会在预定值的附近来回变化,因为系统无法消除多余的纠正。通过加上一个负的平均误差比例值,平均的系统误差值就会总是减少。所以,最终这个PID回路系统会在预定值定下来。

 

微分-来控制将来,计算误差的一阶导,并和一个负常数D相乘,最后和预定值相加。这个导数的控制会对系统的改变作出反应。导数的结果越大,那幺控制系统就对输出结果作出更快速的反应。

 

这个D参数也是PID被称为可预测的控制器的原因。D参数对减少控制器短期的改变很有帮助。一些实际中的速度缓慢的系统可以不需要D参数。用更专业的话来讲,一个PID控制器可以被称作一个在频域系统的滤波器。

 

这一点在计算它是否会最终达到稳定结果时很有用。如果数值挑选不当,控制系统的输入值会反复振荡,这导致系统可能永远无法达到预设值。

 

尽管不同类型的控制器,其结构、原理各不相同,但是基本控制规律只有三个:比例(P)控制、积分(I)控制和微分(D)控制。这几种控制规律可以单独使用,但是更多场合是组合使用。

 

如比例(P)控制、比例-积分(PI)控制、比例-积分-微分(PID)控制等。比例(P)控制单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。

 

实际应用中,比例度的大小应视具体情况而定,比例度太大,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什幺控制作用;比例度太小,控制作用太强,容易导致系统的稳定性变差,引发振荡。

 

对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍小些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选大一些,以提高整个系统的灵敏度,也可以相应减小余差。

 

单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。工业生产中比例控制规律使用较为普遍。

 

比例积分(PI)控制比例控制规律是基本控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。只要有偏差产生,控制器立即产生控制作用。但是,不能最终消除余差的缺点限制了它的单独使用。

 

克服余差的办法是在比例控制的基础上加上积分控制作用。积分控制器的输出与输入偏差对时间的积分成正比。这里的“积分”指的是“积累”的意思。

 

积分控制器的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。只要偏差存在,输出就会不断累积(输出值越来越大或越来越小),一直到偏差为零,累积才会停止。所以,积分控制可以消除余差。

 

积分控制规律又称无差控制规律。积分时间的大小表征了积分控制作用的强弱。积分时间越小,控制作用越强;反之,控制作用越弱。积分控制虽然能消除余差,但它存在着控制不及时的缺点。

 

因为积分输出的累积是渐进的,其产生的控制作用总是落后于偏差的变化,不能及时有效地克服干扰的影响,难以使控制系统稳定下来。

 

所以,实用中一般不单独使用积分控制,而是和比例控制作用结合起来,构成比例积分控制。这样取二者之长,互相弥补,既有比例控制作用的迅速及时,又有积分控制作用消除余差的能力。

 

因此,比例积分控制可以实现较为理想的过程控制。比例积分控制器是目前应用最为广泛的一种控制器,多用于工业生产中液位、压力、流量等控制系统。

 

由于引入积分作用能消除余差,弥补了纯比例控制的缺陷,获得较好的控制质量。但是积分作用的引入,会使系统稳定性变差。对于有较大惯性滞后的控制系统,要尽量避免使用。

 

比例微分(PD)控制比例积分控制对于时间滞后的被控对象使用不够理想。

 

所谓“时间滞后”指的是:当被控对象受到扰动作用后,被控变量没有立即发生变化,而是有一个时间上的延迟,比如容量滞后,此时比例积分控制显得迟钝、不及时。

 

为此,人们设想:能否根据偏差的变化趋势来做出相应的控制动作呢?

 

犹如有经验的操作人员,即可根据偏差的大小来改变阀门的开度(比例作用),又可根据偏差变化的速度大小来预计将要出现的情况,提前进行过量控制,“防患于未然”。这就是具有“超前”控制作用的微分控制规律。

 

微分控制器输出的大小取决于输入偏差变化的速度。微分输出只与偏差的变化速度有关,而与偏差的大小以及偏差是否存在与否无关。

 

如果偏差为一固定值,不管多大,只要不变化,则输出的变化一定为零,控制器没有任何控制作用。微分时间越大,微分输出维持的时间就越长,因此微分作用越强;反之则越弱。当微分时间为0时,就没有微分控制作用了。

 

同理,微分时间的选取,也是需要根据实际情况来确定的。

 

微分控制作用的特点是:动作迅速,具有超前调节功能,可有效改善被控对象有较大时间滞后的控制品质;但是它不能消除余差,尤其是对于恒定偏差输入时,根本就没有控制作用。因此,不能单独使用微分控制规律。

 

比例和微分作用结合,比单纯的比例作用更快。尤其是对容量滞后大的对象,可以减小动偏差的幅度,节省控制时间,显着改善控制质量。PID控制最为理想的控制当属比例-积分-微分控制规律。

 

它集三者之长:既有比例作用的及时迅速,又有积分作用的消除余差能力,还有微分作用的超前控制功能。

 

当偏差阶跃出现时,微分立即大幅度动作,抑制偏差的这种跃变;比例也同时起消除偏差的作用,使偏差幅度减小,由于比例作用是持久和起主要作用的控制规律,因此可使系统比较稳定;而积分作用慢慢把余差克服掉。

 

只要三个作用的控制参数选择得当,便可充分发挥三种控制规律的优点,得到较为理想的控制效果。

 

调试方法编辑比例系数的调节比例系数P的调节范围一般是:0.1–100.如果增益值取0.1,PID调节器输出变化为十分之一的偏差值。如果增益值取100,PID调节器输出变化为一百倍的偏差值。

 

可见该值越大,比例产生的增益作用越大。初调时,选小一些,然后慢慢调大,直到系统波动足够小,再调节积分或微分系数。过大的P值会导致系统不稳定,持续振荡;过小的P值又会使系统反应迟钝。

 

合适的值应该使系统有足够的灵敏度但又不会反应过于灵敏,一定时间的迟缓要靠积分时间来调节。积分系数的调节积分时间常数的定义是,偏差引起输出增长的时间。

 

积分时间设为1秒,则输出变化100%所需时间为1秒。初调时要把积分时间设置长些,然后慢慢调小直到系统稳定为止。微分系数的调节微分值是偏差值的变化率。

 

例如,如果输入偏差值线性变化,则在调节器输出侧叠加一个恒定的调节量。大部分控制系统不需要调节微分时间。因为只有时间滞后的系统才需要附加这个参数。如果画蛇添足加上这个参数反而会使系统的控制受到影响。

 

如果通过比例、积分参数的调节还是收不到理想的控制要求,就可以调节微分时间。初调时把这个系数设小,然后慢慢调大,直到系统稳定。参数整定编辑PID控制器的参数整定是控制系统设计的核心内容。

 

它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。

 

它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。

 

二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。

 

三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。

 

利用该方法进行PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。

 

[1]在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。

 

对于温度系统:P(%)20–60,I(分)3–10,D(分)0.5–3对于流量系统:P(%)40–100,I(分)0.1–1对于压力系统:P(%)30–70,I(分)0.4–3对于液位系统:P(%)20–80,I(分)1–5参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来动差大来波动慢。

 

微分时间应加长理想曲线两个波,前高后低4比1一看二调多分析,调节质量不会低适应控制编辑首先弄清楚什幺是自适应控制在生产过程中为了提高产品质量,增加产量,节约原材料,要求生产管理及生产过程始终处于最优工作状态。

 

因此产生了一种最优控制的方法,这就叫自适应控制。在这种控制中要求系统能够根据被测参数,环境及原材料的成本的变化而自动对系统进行调节,使系统随时处于最佳状态。

 

自适应控制包括性能估计(辨别)、决策和修改三个环节。它是微机控制系统的发展方向。但由于控制规律难以掌握,所以推广起来尚有一些难以解决的问题。

 

加入自适应的pid控制就带有了一些智能特点,像生物一样能适应外界条件的变化。还有自学习系统,就更加智能化了。

 

参数整定编辑PID控制器参数整定与实现》-图书信息书名:PID控制器参数整定与实现作者:黄友锐,曲立国出版社:中国科学出版社出版时间:2010-1-1开本:16开定价:39.00元《PID控制器参数整定与实现》-内容简介本书是作者多年来在基于自然计算的PID控制器参数整定与实现方面进行深入研究的基础上撰写而成的。

 

在吸收国内外许多具有代表性的最新研究成果的基础上,本书着重介绍作者在这一领域的研究成果,主要包括:PID控制器参数整定方法;分数阶PID控制器的参数整定;基于QDRNN的多变量PID控制器参数整定;数字PID控制器的FPGA实现;基于BP神经网络的PID控制器的FPGA实现;基于遗传算法的PID控制器的FPGA实现;基于粒子群算法的PID控制器的FPGA实现;主要算法的基本程序。

 

本书可作为与自动化相关专业的师生、研究人员以及工程技术人员的参考书。

 

《PID控制器参数整定与实现》-图书目录前言第1章绪论第2章PID控制器参数整定方法第3章分数阶PID控制器的参数整定第4章基于QDRNN的多变量PID控制器参数整定第5章数字PID控制器的FPGA实现第6章基于BP神经网络的PID控制器的FPGA实现第7章基于遗传算法的PID控制器的FPGA实现第8章基于粒子群算法的PID控制器的FPGA实现附录参考文献比例积微分控制器的专利、软件及硬件编辑这在IEEE《控制系统》杂志上有综述,包括最优控制器参数设定,可由格拉斯哥大学CAutoD网站免费下载改善PID微分和积分的方法及:Patents,software,andhardwareforPIDcontrol:Anoverviewandanalysisofthecurrentart,IEEEControlSystems,2006。

 

[2]。

 

PID控制器原理是什幺·

 

 

PID控制方式的具体流程是计算误差和温度的变化速度进行PID计算,先以P参数和误差计算出基础输出量,在根据误差的累积值和I参数计算出修正量,最终找出控制点和温度设定点之间的平衡状态,最后在通过温度的变化速率与D参数控制温度的变化速度以防止温度的剧烈变化。

 

进行整定时先进行P调节,使I和D作用无效,观察温度变化曲线,若变化曲线多次出现波形则应该放大比例(P)参数,若变化曲线非常平缓,则应该缩小比例(P)参数。

 

比例(P)参数设定好后,设定积分(I)参数,积分(I)正好与P参数相反,曲线平缓则需要放大积分(I),出现多次波形则需要缩小积分(I)。

 

比例(P)和积分(I)都设定好以后设定微分(D)参数,微分(D)参数与比例(P)参数的设定方法是一样的。

 

简述常规PID控制的基本原理,并说明PID控制器的参数Kp,Ti,Td对控制质量各有什幺影响?

 

所谓PID指的是Proportion-Integral-Differential。翻译成中文是比例-积分-微分。

 

记住两句话:1、PID是经典控制(使用年代久远)2、PID是误差控制()对液压泵转速进行控制还要:1、变频器-作为电机驱动;2、差动变压器-作为输出反馈。

 

PID怎幺对误差控制,听我细细道来:所谓“误差”就是命令与输出的差值。

 

比如你希望控制液压泵转速为1500转(“命令电压”=6V),而事实上控制液压泵转速只有1000转(“输出电压”=4V),则误差:e=500转(对应电压2V)。

 

如果泵实际转速为2000转,则误差e=-500转(注意正负号)。该误差值送到PID控制器,作为PID控制器的输入。PID控制器的输出为:误差乘比例系数Kp+Ki*误差积分+Kd*误差微分。

 

Kp*e+Ki*∫edt+Kd*(de/dt)(式中的t为时间,即对时间积分、微分)上式为三项求和(希望你能看懂),PID结果后送入电机变频器或驱动器。

 

从上式看出,如果没有误差,即e=0,则Kp*e=0;Kd*(de/dt)=0;而Ki*∫edt不一定为0。三项之和不一定为0。总之,如果“误差”存在,PID就会对变频器作调整,直到误差=0。

 

评价一个控制系统是否优越,有三个指标:快、稳、准。

 

所谓快,就是要使压力能快速地达到“命令值”(不知道你的系统要求多少时间)所谓稳,就是要压力稳定不波动或波动量小(不知道你的系统允许多大波动)所谓准,就是要求“命令值”与“输出值”之间的误差e小(不知道你的系统允许多大误差)对于你的系统来说,要求“快”的话,可以增大Kp、Ki值要求“准”的话,可以增大Ki值要求“稳”的话,可以增大Kd值,可以减少压力波动仔细分析可以得知:这三个指标是相互矛盾的。

 

如果太“快”,可能导致不“稳”;如果太“稳”,可能导致不“快”;只要系统稳定且存在积分Ki,该系统在静态是没有误差的(会存在动态误差);所谓动态误差,指当“命令值”不为恒值时,“输出值”跟不上“命令值”而存在的误差。

 

不管是谁设计的、再好的系统都存在动态误差,动态误差体现的是系统的跟踪特性,比如说,有的音响功放对高频声音不敏感,就说明功放跟踪性能不好。

 

调整PID参数有两种方法:1、仿真法;2、“试凑法”仿真法我想你是不会的,介绍一下“试凑法”“试凑法”设置PID参数的建议步骤:1、把Ki与Kd设为0,不要积分与微分;2、把Kp值从0开始慢慢增大,观察压力的反应速度是否在你的要求内;3、当压力的反应速度达到你的要求,停止增大Kp值;4、在该Kp值的基础上减少10%;5、把Ki值从0开始慢慢增大;6、当压力开始波动,停止增大Ki值;7、在该Ki值的基础上减少10%;8、把Kd值从0开始慢慢增大,观察压力的反应速度是否在你的要求内。

 

什幺是PID控制?其主要用途是什幺?PID各项的主要作用是什幺

 

PID是比例,积分,微分的缩写.1比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。

 

比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。2积分调节作用:是使系统消除稳态误差,提高无差度。

 

因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。

 

反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。

 

e68a84e8a2ade799bee5baa6e997aee7ad呵呵032313微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。

 

因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。

 

此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。扩展资料:PID控制器的参数整定是控制系统设计的核心内容。

 

它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。

 

它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法。

 

它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点。

 

其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行。

 

自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。

 

解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。

 

这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势。

 

这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

 

不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。

 

PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligentregulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。

 

有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。

 

可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。

 

还有可以实现PID控制功能的控制器,如Rockwell的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

Be First to Comment

发表回复

您的电子邮箱地址不会被公开。