本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.
一、Sequential介绍
由官网给的Example可以大概了解到Sequential是将多层网络进行便捷整合,方便可视化以及简化网络复杂性
二、复现网络模型训练CIFAR-10数据集
这里面有个Hidden units隐藏单元其实就是连个线性层
把隐藏层全部展开整个神经网络架构如下:
①输入图像为3通道的(32,32)图像,(C,H,W)=(3,32,32)
②通过一层(5,5)的卷积Convolution,输出特征图为(32,32,32),特征图的(H,W),通过(5,5)的卷积核大小没有发生变换,这说明卷积层肯定对原始图像进行了加边
分析一下:
故padding = 2,加了两成外边,之所以channel由3变成了32,是因为卷积核有多个并非一个卷积核
最终:输入3通道;输出32通道;stride = 1;padding = 2;dilation = 1(默认值);kernel_size = 5;
torch.nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2)
③接着将(32,32,32)特征通过Max-Pooling,池化核为(2,2),输出为(32,16,16)的特征图
torch.nn.MaxPool2d(kernel_size=2)
④接着将(32,16,16)特征图通过(5,5)大小的卷积核进行卷积,输出特征图为(32,16,16),特征图的(H,W),通过(5,5)的卷积核大小没有发生变换,这说明卷积层肯定对原始图像进行了加边
同理根据官网给的计算公式可以求出padding = 2
通过上面两次的计算可以看出,只要通过卷积核大小为(5,5),卷积之后的大小不变则padding肯定为2
故padding = 2,加了两成外边,这里channel由32变成了32,可以得知仅使用了一个卷积核
最终:输入32通道;输出32通道;stride = 1;padding = 2;dilation = 1(默认值);kernel_size = 5;
torch.nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2)
⑤接着将(32,16,16)的特征图通过Max-Pooling,池化核为(2,2),输出为(32,8,8)的特征图
torch.nn.MaxPool2d(kernel_size=2)
⑥再将(32,8,8)的特征图输入到卷积核为(5,5)的卷积层中,得到(64,8,8)特征图,特征图的(H,W),通过(5,5)的卷积核大小没有发生变换,这说明卷积层肯定对原始图像进行了加边,由前两次的计算得出的结果可以得知padding=2,这里channel由32变成了64,是因为使用了多个卷积核分别进行卷积
torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2)
⑦再将(64,8,8)的特征图通过Max-Pooling,池化核为(2,2),输出为(64,4,4)的特征图
torch.nn.MaxPool2d(kernel_size=2)
⑧再将(64,4,4)的特征图进行Flatten展平成(1024)特征
torch.nn.Flatten()
⑨再将(1024)特征传入第一个Linear层,输出(64)
torch.nn.Linear(1024,64)
⑩最后将(64)特征图经过第二个Linear层,输出(10),从而达到CIFAR-10数据集的10分类任务
torch.nn.Linear(64,10)
三、传统神经网络实现
import torch from torch import nn from torch.nn import Conv2d from torch.utils.tensorboard import SummaryWriter class Beyond(nn.Module): def __init__(self): super(Beyond,self).__init__() self.conv_1 = torch.nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2) self.maxpool_1 = torch.nn.MaxPool2d(kernel_size=2) self.conv_2 = torch.nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2) self.maxpool_2 = torch.nn.MaxPool2d(kernel_size=2) self.conv_3 = torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2) self.maxpool_3 = torch.nn.MaxPool2d(kernel_size=2) self.flatten = torch.nn.Flatten() self.linear_1 = torch.nn.Linear(1024,64) self.linear_2 = torch.nn.Linear(64,10) def forward(self,x): x = self.conv_1(x) x = self.maxpool_1(x) x = self.conv_2(x) x = self.maxpool_2(x) x = self.conv_3(x) x = self.maxpool_3(x) x = self.flatten(x) x = self.linear_1(x) x = self.linear_2(x) return x beyond = Beyond() print(beyond) """ Beyond( (conv_1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) (maxpool_1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (conv_2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) (maxpool_2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (conv_3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) (maxpool_3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (flatten): Flatten(start_dim=1, end_dim=-1) (linear_1): Linear(in_features=1024, out_features=64, bias=True) (linear_2): Linear(in_features=64, out_features=10, bias=True) ) """ input = torch.zeros((64,3,32,32)) print(input.shape)#torch.Size([64, 3, 32, 32]) output = beyond(input) print(output.shape)#torch.Size([64, 10]) #将网络图上传值tensorboard中进行可视化展示 writer = SummaryWriter("y_log") writer.add_graph(beyond,input) writer.close()
在Terminal下运行 tensorboard --logdir=y_log --port=7870
,logdir为打开事件文件的路径,port为指定端口打开;
通过指定端口2312进行打开tensorboard,若不设置port参数,默认通过6006端口进行打开。
四、使用Sequential实现神经网络
import torch from torch import nn from torch.nn import Conv2d from torch.utils.tensorboard import SummaryWriter class Beyond(nn.Module): def __init__(self): super(Beyond,self).__init__() self.model = torch.nn.Sequential( torch.nn.Conv2d(3,32,5,padding=2), torch.nn.MaxPool2d(2), torch.nn.Conv2d(32,32,5,padding=2), torch.nn.MaxPool2d(2), torch.nn.Conv2d(32,64,5,padding=2), torch.nn.MaxPool2d(2), torch.nn.Flatten(), torch.nn.Linear(1024,64), torch.nn.Linear(64,10) ) def forward(self,x): x = self.model(x) return x beyond = Beyond() print(beyond) """ Beyond( (conv_1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) (maxpool_1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (conv_2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) (maxpool_2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (conv_3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) (maxpool_3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (flatten): Flatten(start_dim=1, end_dim=-1) (linear_1): Linear(in_features=1024, out_features=64, bias=True) (linear_2): Linear(in_features=64, out_features=10, bias=True) ) """ input = torch.zeros((64,3,32,32)) print(input.shape)#torch.Size([64, 3, 32, 32]) output = beyond(input) print(output.shape)#torch.Size([64, 10]) #将网络图上传值tensorboard中进行可视化展示 writer = SummaryWriter("y_log") writer.add_graph(beyond,input) writer.close()
在Terminal下运行 tensorboard --logdir=y_log --port=7870
,logdir为打开事件文件的路径,port为指定端口打开;
通过指定端口2312进行打开tensorboard,若不设置port参数,默认通过6006端口进行打开。
实现效果是完全一样的,使用Sequential看起来更加简介,可视化效果更好些。
Be First to Comment