Press "Enter" to skip to content

RepVgg实战:使用RepVgg实现图像分类(一)

本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.

 

RepVgg实战

 

RepVgg通过结构重参数化让VGG再次伟大。

 

所谓“VGG式”指的是:

 

 

    1. 没有任何分支结构。即通常所说的plain或feed-forward架构。

 

    1. 仅使用3×3卷积。

 

    1. 仅使用ReLU作为激活函数。

 

 

RepVGG的更深版本达到了84.16%正确率!反超若干transformer!PyTorch代码和模型已放到github上面,链接:https://github.com/DingXiaoH/RepVGG。

 

RepVgg是如何到的呢?简单地说就是:

首先, 训练一个多分支模型
然后,将多分支模型等价转换为单路模型
最在,在部署的时候,部署转换后单路模型

具体的讲解可以看作者丁霄汉的知乎上的文章:

 

https://zhuanlan.zhihu.com/p/344324470。

 

我这篇文章主要讲解如何使用RepVgg完成图像分类任务,接下来我们一起完成项目的实战。

 

 

 

通过这篇文章能让你学到:

 

 

    1. 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段?

 

    1. 如何实现RepVGG模型实现训练?

 

    1. 如何将多分支模型等价转换为单路模型?

 

    1. 如何使用pytorch自带混合精度?

 

    1. 如何使用梯度裁剪防止梯度爆炸?

 

    1. 如何使用DP多显卡训练?

 

    1. 如何绘制loss和acc曲线?

 

    1. 如何生成val的测评报告?

 

    1. 如何编写测试脚本测试测试集?

 

    1. 如何使用余弦退火策略调整学习率?

 

    1. 如何使用AverageMeter类统计ACC和loss等自定义变量?

 

    1. 如何理解和统计ACC1和ACC5?

 

    1. 如何使用EMA?

 

 

安装timm

 

使用pip就行,命令:

 

pip install timm

 

数据增强Cutout和Mixup

 

为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令:

 

pip install torchtoolbox

 

Cutout实现,在transforms中。

 

from torchtoolbox.transform import Cutout
# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    Cutout(),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

 

需要导入包:from timm.data.mixup import Mixup,

 

定义Mixup,和SoftTargetCrossEntropy

 

mixup_fn = Mixup(
    mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
    prob=0.1, switch_prob=0.5, mode='batch',
    label_smoothing=0.1, num_classes=12)
 criterion_train = SoftTargetCrossEntropy()

 

参数详解:

 

mixup_alpha (float): mixup alpha 值,如果 > 0,则 mixup 处于活动状态。

 

cutmix_alpha (float):cutmix alpha 值,如果 > 0,cutmix 处于活动状态。

 

cutmix_minmax (List[float]):cutmix 最小/最大图像比率,cutmix 处于活动状态,如果不是 None,则使用这个 vs alpha。

 

如果设置了 cutmix_minmax 则cutmix_alpha 默认为1.0

 

prob (float): 每批次或元素应用 mixup 或 cutmix 的概率。

 

switch_prob (float): 当两者都处于活动状态时切换cutmix 和mixup 的概率 。

 

mode (str): 如何应用 mixup/cutmix 参数(每个’batch’,‘pair’(元素对),‘elem’(元素)。

 

correct_lam (bool): 当 cutmix bbox 被图像边框剪裁时应用。 lambda 校正

 

label_smoothing (float):将标签平滑应用于混合目标张量。

 

num_classes (int): 目标的类数。

 

EMA(Exponential Moving Average)是指数移动平均值。在深度学习中的做法是保存历史的一份参数,在一定训练阶段后,拿历史的参数给目前学习的参数做一次平滑。具体实现如下:

 

class EMA():
    def __init__(self, model, decay):
        self.model = model
        self.decay = decay
        self.shadow = {
 }
        self.backup = {
 }
    def register(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                self.shadow[name] = param.data.clone()
    def update(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                assert name in self.shadow
                new_average = (1.0 - self.decay) * param.data + self.decay * self.shadow[name]
                self.shadow[name] = new_average.clone()
    def apply_shadow(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                assert name in self.shadow
                self.backup[name] = param.data
                param.data = self.shadow[name]
    def restore(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                assert name in self.backup
                param.data = self.backup[name]
        self.backup = {
 }

 

加入到模型中。

 

# 初始化
ema = EMA(model, 0.999)
ema.register()
# 训练过程中,更新完参数后,同步update shadow weights
def train():
    optimizer.step()
    ema.update()
# eval前,apply shadow weights;eval之后,恢复原来模型的参数
def evaluate():
    ema.apply_shadow()
    # evaluate
    ema.restore()

 

这个ema最好放在微调的时候使用,否则验证集不上分,或者上分很慢。

 

项目结构

 

RepVgg_demo
├─data1
│  ├─Black-grass
│  ├─Charlock
│  ├─Cleavers
│  ├─Common Chickweed
│  ├─Common wheat
│  ├─Fat Hen
│  ├─Loose Silky-bent
│  ├─Maize
│  ├─Scentless Mayweed
│  ├─Shepherds Purse
│  ├─Small-flowered Cranesbill
│  └─Sugar beet
├─models
│  ├─__init__.py
│  ├─repvgg.py
│  └─se_block.py
├─mean_std.py
├─makedata.py
├─ema.py
├─train.py
└─test.py

 

mean_std.py:计算mean和std的值。

 

makedata.py:生成数据集。

 

ema.py:EMA脚本

 

models文件夹下的micronet.py、activation.py和microconfig.py:来自官方的pytorch版本的代码。

 

– repvgg.py:网络文件。

 

– se_block.py:SE注意力机制。

 

为了能在DP方式中使用混合精度,还需要在模型的forward函数前增加@autocast()。

 

计算mean和std

 

为了使模型更加快速的收敛,我们需要计算出mean和std的值,新建mean_std.py,插入代码:

 

from torchvision.datasets import ImageFolder
import torch
from torchvision import transforms
def get_mean_and_std(train_data):
    train_loader = torch.utils.data.DataLoader(
        train_data, batch_size=1, shuffle=False, num_workers=0,
        pin_memory=True)
    mean = torch.zeros(3)
    std = torch.zeros(3)
    for X, _ in train_loader:
        for d in range(3):
            mean[d] += X[:, d, :, :].mean()
            std[d] += X[:, d, :, :].std()
    mean.div_(len(train_data))
    std.div_(len(train_data))
    return list(mean.numpy()), list(std.numpy())
if __name__ == '__main__':
    train_dataset = ImageFolder(root=r'data1', transform=transforms.ToTensor())
    print(get_mean_and_std(train_dataset))

 

数据集结构:

 

 

 

运行结果:

 

([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])

 

把这个结果记录下来,后面要用!

 

生成数据集

 

我们整理还的图像分类的数据集结构是这样的

 

data
├─Black-grass
├─Charlock
├─Cleavers
├─Common Chickweed
├─Common wheat
├─Fat Hen
├─Loose Silky-bent
├─Maize
├─Scentless Mayweed
├─Shepherds Purse
├─Small-flowered Cranesbill
└─Sugar beet

 

pytorch和keras默认加载方式是ImageNet数据集格式,格式是

 

├─data
│  ├─val
│  │   ├─Black-grass
│  │   ├─Charlock
│  │   ├─Cleavers
│  │   ├─Common Chickweed
│  │   ├─Common wheat
│  │   ├─Fat Hen
│  │   ├─Loose Silky-bent
│  │   ├─Maize
│  │   ├─Scentless Mayweed
│  │   ├─Shepherds Purse
│  │   ├─Small-flowered Cranesbill
│  │   └─Sugar beet
│  └─train
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet

 

新增格式转化脚本makedata.py,插入代码:

 

import glob
import os
import shutil
image_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):
    print('true')
    #os.rmdir(file_dir)
    shutil.rmtree(file_dir)#删除再建立
    os.makedirs(file_dir)
else:
    os.makedirs(file_dir)
from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(train_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)
for file in val_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(val_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)

 

完成上面的内容就可以开启训练和测试了。

Be First to Comment

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注