本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.
基于CNN卷积神经网络的TensorFlow+Keras深度学习的人脸识别
在上一篇博客中,利用CNN卷积神经网络的TensorFlow+Keras深度学习搭建了人脸模型:
基于CNN卷积神经网络的TensorFlow+Keras深度学习搭建人脸模型
本篇博客将继续利用CNN卷积神经网络的TensorFlow+Keras深度学习
实现人脸识别
项目实现效果
PS:项目地址在最后会开源
本项目使用TensorFlow-GPU
进行训练:需要提前搭建好CUDA环境
具体可以参考本文:TensorFlow-GPU-2.4.1与CUDA安装教程
模型数据
嵌入模型
Model: "embedding" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_image (InputLayer) [(None, 100, 100, 3)] 0 _________________________________________________________________ conv2d (Conv2D) (None, 91, 91, 64) 19264 _________________________________________________________________ max_pooling2d (MaxPooling2D) (None, 46, 46, 64) 0 _________________________________________________________________ conv2d_1 (Conv2D) (None, 40, 40, 128) 401536 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (None, 20, 20, 128) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 17, 17, 128) 262272 _________________________________________________________________ max_pooling2d_2 (MaxPooling2 (None, 9, 9, 128) 0 _________________________________________________________________ conv2d_3 (Conv2D) (None, 6, 6, 256) 524544 _________________________________________________________________ flatten (Flatten) (None, 9216) 0 _________________________________________________________________ dense (Dense) (None, 4096) 37752832 ================================================================= Total params: 38,960,448 Trainable params: 38,960,448 Non-trainable params: 0 _________________________________________________________________
CNN神经网络模型
Model: "SiameseNetWork" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_image (InputLayer) [(None, 100, 100, 3) 0 __________________________________________________________________________________________________ validation_img (InputLayer) [(None, 100, 100, 3) 0 __________________________________________________________________________________________________ embedding (Functional) (None, 4096) 38960448 input_image[0][0] validation_img[0][0] __________________________________________________________________________________________________ distance (L1Dist) (None, 4096) 0 embedding[4][0] embedding[5][0] __________________________________________________________________________________________________ dense_4 (Dense) (None, 1) 4097 distance[0][0] ================================================================================================== Total params: 38,964,545 Trainable params: 38,964,545 Non-trainable params: 0 __________________________________________________________________________________________________
项目概述
项目运行流程
1. 收集人脸数据—设置数据的路径并对数据集预处理
2. 构建训练模型——搭建深度神经网络
3. 深度训练人脸数据——CNN卷积神经网络+TensorFlow+Keras
4. 搭建人脸识别APP——OpenCV+Kivy.APP
核心环境配置
Python == 3.9.0
labelme == 5.0.1
tensorflow -gpu == 2.7.0 (CUDA11.2)
opencv-python == 4.0.1
Kivy == 2.1.0
albumentations == 0.7.12
项目核心代码详解
名称 | 用途 |
---|---|
data | 收集的人脸数据 |
data-anchor | 被测人脸数据 |
data-negative | 混淆数据集 |
data-positive | 预处理后人脸数据 |
training_checkpoints | 训练数据集日志(检查点) |
.h5 | 已训练好的人脸模型(.h5) |
ImgPath0.py | 设置数据集的目录 |
ImgCatch1.py | 手机人脸数据 |
ImgPreprocess2.py | 图像预处理 |
Model_Engineering3 | 构建训练模型 |
Training.py | 深度训练数据集 |
cvOS.py | 人脸识别APP |
TensorFlowTest.py | CUDA环境检测 |
本项目用的到野生人脸数据集下载地址:深度学习人脸训练数据集
本项目基于《Siamese Neural Networks for One-shot Image Recognition》这篇论文为理论基础:Siamese Neural Networks for One-shot Image Recognition
核心代码
引入的核心库文件:
import cv2 import numpy as np from matplotlib import pyplot as plt from tensorflow.keras.models import Model from tensorflow.keras.layers import Layer, Conv2D, Dense, MaxPooling2D, Input, Flatten import tensorflow as tf
加入GPU内存增长限制—防止爆显存
gpus = tf.config.experimental.list_physical_devices('GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True)
设置数据集目录
POS_PATH = os.path.join('data', 'positive') NEG_PATH = os.path.join('data', 'negative') ANC_PATH = os.path.join('data', 'anchor') os.makedirs(POS_PATH) os.makedirs(NEG_PATH) os.makedirs(ANC_PATH) # 导入野生数据集 for directory in os.listdir('666'): for file in os.listdir(os.path.join('666', directory)): EX_PATH = os.path.join('666', directory, file) NEW_PATH = os.path.join(NEG_PATH, file) os.replace(EX_PATH, NEW_PATH)
收集人脸识别数据——UUID格式命名
cap = cv2.VideoCapture(0) while cap.isOpened(): ret, frame = cap.read() # 裁剪图像大小250x250px frame = frame[120:120+250,200:200+250, :] # 收集人脸数据——正面清晰的数据集 if cv2.waitKey(1) & 0XFF == ord('a'): # 对数据进行UUID命名 imgname = os.path.join(ANC_PATH, '{}.jpg'.format(uuid.uuid1())) # 写入并保存数据 cv2.imwrite(imgname, frame) # 收集数据集——侧脸斜脸的数据集(可以较模糊) if cv2.waitKey(1) & 0XFF == ord('p'): # 对数据进行UUID命名 imgname = os.path.join(POS_PATH, '{}.jpg'.format(uuid.uuid1())) # 写入并保存数据 cv2.imwrite(imgname, frame) cv2.imshow('Image Collection', frame) if cv2.waitKey(1) & 0XFF == ord('q'): break # 释放摄像头资源 cap.release() cv2.destroyAllWindows()
创建标签化数据集
positives = tf.data.Dataset.zip((anchor, positive, tf.data.Dataset.from_tensor_slices(tf.ones(len(anchor))))) negatives = tf.data.Dataset.zip((anchor, negative, tf.data.Dataset.from_tensor_slices(tf.zeros(len(anchor))))) data = positives.concatenate(negatives) samples = data.as_numpy_iterator() exampple = samples.next()
构建训练和测试数据的分区
def preprocess_twin(input_img, validation_img, label): return(preprocess(input_img), preprocess(validation_img), label) res = preprocess_twin(*exampple) data = data.map(preprocess_twin) data = data.cache() data = data.shuffle(buffer_size=1024) train_data = data.take(round(len(data)*.7)) train_data = train_data.batch(16) train_data = train_data.prefetch(8) test_data = data.skip(round(len(data)*.7)) test_data = test_data.take(round(len(data)*.3)) test_data = test_data.batch(16) test_data = test_data.prefetch(8)``
创建模型
inp = Input(shape=(100,100,3), name='input_image') c1 = Conv2D(64, (10,10), activation='relu')(inp) m1 = MaxPooling2D(64, (2,2), padding='same')(c1) c2 = Conv2D(128, (7,7), activation='relu')(m1) m2 = MaxPooling2D(64, (2,2), padding='same')(c2) c3 = Conv2D(128, (4,4), activation='relu')(m2) m3 = MaxPooling2D(64, (2,2), padding='same')(c3) c4 = Conv2D(256, (4,4), activation='relu')(m3) f1 = Flatten()(c4) d1 = Dense(4096, activation='sigmoid')(f1) mod = Model(inputs=[inp], outputs=[d1], name='embedding') mod.summary()
def make_embedding(): inp = Input(shape=(100,100,3), name='input_image') # 第一层卷积 c1 = Conv2D(64, (10,10), activation='relu')(inp) m1 = MaxPooling2D(64, (2,2), padding='same')(c1) # 第二层卷积 c2 = Conv2D(128, (7,7), activation='relu')(m1) m2 = MaxPooling2D(64, (2,2), padding='same')(c2) # 第三层卷积 c3 = Conv2D(128, (4,4), activation='relu')(m2) m3 = MaxPooling2D(64, (2,2), padding='same')(c3) # 最终卷积 c4 = Conv2D(256, (4,4), activation='relu')(m3) f1 = Flatten()(c4) d1 = Dense(4096, activation='sigmoid')(f1) return Model(inputs=[inp], outputs=[d1], name='embedding') embedding = make_embedding()
构建距离层
# L1距离层 class L1Dist(Layer): # 初始化方法 def __init__(self, **kwargs): super().__init__() # 数据相似度计算 def call(self, input_embedding, validation_embedding): return tf.math.abs(input_embedding - validation_embedding) l1 = L1Dist() l1(anchor_embedding, validation_embedding)
构建神经网络模型
input_image = Input(name='input_img', shape=(100,100,3)) validation_image = Input(name='validation_img', shape=(100,100,3)) inp_embedding = embedding(input_image) val_embedding = embedding(validation_image) siamese_layer = L1Dist() distances = siamese_layer(inp_embedding, val_embedding) classifier = Dense(1, activation='sigmoid')(distances) siamese_network = Model(inputs=[input_image, validation_image], outputs=classifier, name='SiameseNetwork')
深度训练模型
搭建损失值和优化器
binary_cross_loss = tf.losses.BinaryCrossentropy() opt = tf.keras.optimizers.Adam(1e-4) # 0.0001
设置训练检查点
checkpoint_dir = './training_checkpoints' checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt') checkpoint = tf.train.Checkpoint(opt=opt, siamese_model=siamese_model)
设置训练batch
test_batch = train_data.as_numpy_iterator() batch_1 = test_batch.next() X = batch_1[:2] y = batch_1[2] @tf.function def train_step(batch): # 日志记录 with tf.GradientTape() as tape: # 获得人脸数据 X = batch[:2] # 获得标签 y = batch[2] # yhat的值向上传递 yhat = siamese_model(X, training=True) # 计算损失值 loss = binary_cross_loss(y, yhat) print(loss) # 计算渐变值 grad = tape.gradient(loss, siamese_model.trainable_variables) # 计算更新的权重传递给模型 opt.apply_gradients(zip(grad, siamese_model.trainable_variables)) # 返回损失值 return loss
设置训练循环
def train(data, EPOCHS): # Loop through epochs for epoch in range(1, EPOCHS+1): print(' Epoch {}/{}'.format(epoch, EPOCHS)) progbar = tf.keras.utils.Progbar(len(data)) # Loop through each batch for idx, batch in enumerate(data): # Run train step here train_step(batch) progbar.update(idx+1) # Save checkpoints if epoch % 10 == 0: checkpoint.save(file_prefix=checkpoint_prefix)
开始训练
EPOCHS = 50000 train(train_data, EPOCHS)
保存模型
siamese_model.save('siamesemodel.h5')
加载模型
model = tf.keras.models.load_model('siamesemodel.h5', custom_objects={ 'L1Dist':L1Dist, 'BinaryCrossentropy':tf.losses.BinaryCrossentropy})
测试模型识别效果
cap = cv2.VideoCapture(0) while cap.isOpened(): ret, frame = cap.read() frame = frame[120:120+250,200:200+250, :] cv2.imshow('Verification', frame) if cv2.waitKey(10) & 0xFF == ord('v'): cv2.imwrite(os.path.join('application_data', 'input_image', 'input_image.jpg'), frame) results, verified = verify(model, 0.9, 0.7) print(verified) if cv2.waitKey(10) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
人脸识别APP—窗口UI
# Coding BIGBOSSyifi # Datatime:2022/4/27 22:07 # Filename:FaceAPP.py # Toolby: PyCharm # 本篇代码实现功能:加载模型通过摄像头进行验证 代码51可修改模型路径 from kivy.app import App from kivy.uix.boxlayout import BoxLayout from kivy.uix.image import Image from kivy.uix.button import Button from kivy.uix.label import Label from kivy.clock import Clock from kivy.graphics.texture import Texture from kivy.logger import Logger import cv2 import tensorflow as tf from tensorflow.keras.layers import Layer import os import numpy as np # 向命运妥协法(CPU): #os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" #os.environ["CUDA_VISIBLE_DEVICES"] = "-1" class L1Dist(Layer): def __init__(self, **kwargs): super().__init__() # 相似性计算: def call(self, input_embedding, validation_embedding): return tf.math.abs(input_embedding - validation_embedding) # 构建APP布局: class CamApp(App): def build(self): # 主界面布局: self.web_cam = Image(size_hint=(1, .8)) self.button = Button(text="Start Verify", on_press=self.verify, size_hint=(1, .1)) self.verification_label = Label(text="Verification Uninitiated...", size_hint=(1, .1)) # 添加按键功能 layout = BoxLayout(orientation='vertical') layout.add_widget(self.web_cam) layout.add_widget(self.button) layout.add_widget(self.verification_label) # 加载tensorflow/keras模型 self.model = tf.keras.models.load_model('siamesemodelPRO.h5', custom_objects={ 'L1Dist': L1Dist}) # 设置cv2摄像捕捉 self.capture = cv2.VideoCapture(0) Clock.schedule_interval(self.update, 1.0 / 33.0) return layout # 连续获取摄像头图像 def update(self, *args): # 读取cv2的框架: ret, frame = self.capture.read() frame = frame[120:120 + 250, 200:200 + 250, :] # 对摄像捕捉图像裁剪 # 翻转水平并将图像转换为纹理图像 buf = cv2.flip(frame, 0).tostring() img_texture = Texture.create(size=(frame.shape[1], frame.shape[0]), colorfmt='bgr') img_texture.blit_buffer(buf, colorfmt='bgr', bufferfmt='ubyte') self.web_cam.texture = img_texture # 将图像从文件和转换器转换为100x100px def preprocess(self, file_path): # 读取路径图片 byte_img = tf.io.read_file(file_path) # 加载路径图片 img = tf.io.decode_jpeg(byte_img) # 预处理步骤-将图像大小调整为100x100x3 (3通道) img = tf.image.resize(img, (100, 100)) # 将图像缩放到0到1之间 img = img / 255.0 # Return image return img # 验证人脸图像 def verify(self, *args): # 指定阈值 detection_threshold = 0.99 verification_threshold = 0.8 # 近似值设置 SAVE_PATH = os.path.join('application_data', 'input_image', 'input_image.jpg') ret, frame = self.capture.read() frame = frame[120:120 + 250, 200:200 + 250, :] cv2.imwrite(SAVE_PATH, frame) # 生成结果数组 results = [] for image in os.listdir(os.path.join('application_data', 'verification_images')): input_img = self.preprocess(os.path.join('application_data', 'input_image', 'input_image.jpg')) validation_img = self.preprocess(os.path.join('application_data', 'verification_images', image)) # 对模型进行预测(验证) result = self.model.predict(list(np.expand_dims([input_img, validation_img], axis=1))) results.append(result) # 检测阈值:高于该阈值的预测被认为是正的指标 detection = np.sum(np.array(results) > detection_threshold) # 验证阈值:阳性预测/总阳性样本的比例 verification = detection / len(os.listdir(os.path.join('application_data', 'verification_images'))) verified = verification > verification_threshold # 设置APP文本 self.verification_label.text = 'Verified' if verified == True else 'Unverified' # 输出验证结果 Logger.info(results) Logger.info(detection) Logger.info(verification) Logger.info(verified) return results, verified if __name__ == '__main__': CamApp().run()
Be First to Comment