本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.
文章目录
Hi,大家好,这里是丹成学长的毕设系列文章!
对毕设有任何疑问都可以问学长哦!
这两年开始,各个学校对毕设的要求越来越高,难度也越来越大… 毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定要提前准备,避免到后面措手不及,草草了事。
为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的新项目是
基于深度学习的人脸表情识别
磊学长这里给一个题目综合评分(每项满分5分)
难度系数:4分
工作量:4分
创新点:3分
刺 选题指导, 项目分享:
https://blog.csdn.net/Mr_DC_IT/article/details/126460477
1 技术介绍
1.1 技术概括
面部表情识别技术源于1971年心理学家Ekman和Friesen的一项研究,他们提出人类主要有六种基本情感,每种情感以唯一的表情来反映当时的心理活动,这六种情感分别是愤怒(anger)、高兴(happiness)、悲伤 (sadness)、惊讶(surprise)、厌恶(disgust)和恐惧(fear)。
尽管人类的情感维度和表情复杂度远不是数字6可以量化的,但总体而言,这6种也差不多够描述了。
1.2 目前表情识别实现技术
2 实现效果
废话不多说,先上实现效果
3 深度学习表情识别实现过程
3.1 网络架构
面部表情识别CNN架构(改编自 埃因霍芬理工大学PARsE结构图)
其中,通过卷积操作来创建特征映射,将卷积核挨个与图像进行卷积,从而创建一组要素图,并在其后通过池化(pooling)操作来降维。
3.2 数据
主要来源于kaggle比赛,下载地址。
有七种表情类别: (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral).
数据是48×48 灰度图,格式比较奇葩。
第一列是情绪分类,第二列是图像的numpy,第三列是train or test。
3.3 实现流程
3.4 部分实现代码
import cv2 import sys import json import numpy as np from keras.models import model_from_json emotions = ['angry', 'fear', 'happy', 'sad', 'surprise', 'neutral'] cascPath = sys.argv[1] faceCascade = cv2.CascadeClassifier(cascPath) noseCascade = cv2.CascadeClassifier(cascPath) # load json and create model arch json_file = open('model.json','r') loaded_model_json = json_file.read() json_file.close() model = model_from_json(loaded_model_json) # load weights into new model model.load_weights('model.h5') # overlay meme face def overlay_memeface(probs): if max(probs) > 0.8: emotion = emotions[np.argmax(probs)] return 'meme_faces/{}-{}.png'.format(emotion, emotion) else: index1, index2 = np.argsort(probs)[::-1][:2] emotion1 = emotions[index1] emotion2 = emotions[index2] return 'meme_faces/{}-{}.png'.format(emotion1, emotion2) def predict_emotion(face_image_gray): # a single cropped face resized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA) # cv2.imwrite(str(index)+'.png', resized_img) image = resized_img.reshape(1, 1, 48, 48) list_of_list = model.predict(image, batch_size=1, verbose=1) angry, fear, happy, sad, surprise, neutral = [prob for lst in list_of_list for prob in lst] return [angry, fear, happy, sad, surprise, neutral] video_capture = cv2.VideoCapture(0) while True: # Capture frame-by-frame ret, frame = video_capture.read() img_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY,1) faces = faceCascade.detectMultiScale( img_gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags=cv2.cv.CV_HAAR_SCALE_IMAGE ) # Draw a rectangle around the faces for (x, y, w, h) in faces: face_image_gray = img_gray[y:y+h, x:x+w] filename = overlay_memeface(predict_emotion(face_image_gray)) print filename meme = cv2.imread(filename,-1) # meme = (meme/256).astype('uint8') try: meme.shape[2] except: meme = meme.reshape(meme.shape[0], meme.shape[1], 1) # print meme.dtype # print meme.shape orig_mask = meme[:,:,3] # print orig_mask.shape # memegray = cv2.cvtColor(orig_mask, cv2.COLOR_BGR2GRAY) ret1, orig_mask = cv2.threshold(orig_mask, 10, 255, cv2.THRESH_BINARY) orig_mask_inv = cv2.bitwise_not(orig_mask) meme = meme[:,:,0:3] origMustacheHeight, origMustacheWidth = meme.shape[:2] roi_gray = img_gray[y:y+h, x:x+w] roi_color = frame[y:y+h, x:x+w] # Detect a nose within the region bounded by each face (the ROI) nose = noseCascade.detectMultiScale(roi_gray) for (nx,ny,nw,nh) in nose: # Un-comment the next line for debug (draw box around the nose) #cv2.rectangle(roi_color,(nx,ny),(nx+nw,ny+nh),(255,0,0),2) # The mustache should be three times the width of the nose mustacheWidth = 20 * nw mustacheHeight = mustacheWidth * origMustacheHeight / origMustacheWidth # Center the mustache on the bottom of the nose x1 = nx - (mustacheWidth/4) x2 = nx + nw + (mustacheWidth/4) y1 = ny + nh - (mustacheHeight/2) y2 = ny + nh + (mustacheHeight/2) # Check for clipping if x1 < 0: x1 = 0 if y1 < 0: y1 = 0 if x2 > w: x2 = w if y2 > h: y2 = h # Re-calculate the width and height of the mustache image mustacheWidth = (x2 - x1) mustacheHeight = (y2 - y1) # Re-size the original image and the masks to the mustache sizes # calcualted above mustache = cv2.resize(meme, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA) mask = cv2.resize(orig_mask, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA) mask_inv = cv2.resize(orig_mask_inv, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA) # take ROI for mustache from background equal to size of mustache image roi = roi_color[y1:y2, x1:x2] # roi_bg contains the original image only where the mustache is not # in the region that is the size of the mustache. roi_bg = cv2.bitwise_and(roi,roi,mask = mask_inv) # roi_fg contains the image of the mustache only where the mustache is roi_fg = cv2.bitwise_and(mustache,mustache,mask = mask) # join the roi_bg and roi_fg dst = cv2.add(roi_bg,roi_fg) # place the joined image, saved to dst back over the original image roi_color[y1:y2, x1:x2] = dst break # cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) # angry, fear, happy, sad, surprise, neutral = predict_emotion(face_image_gray) # text1 = 'Angry: {} Fear: {} Happy: {}'.format(angry, fear, happy) # text2 = ' Sad: {} Surprise: {} Neutral: {}'.format(sad, surprise, neutral) # # cv2.putText(frame, text1, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3) # cv2.putText(frame, text2, (50, 150), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3) # Display the resulting frame cv2.imshow('Video', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything is done, release the capture video_capture.release() cv2.destroyAllWindows()
需要完整代码以及学长训练好的模型,联系学长获取
刺 选题指导, 项目分享:
Be First to Comment