Press "Enter" to skip to content

手把手教你使用Tensorflow加载VGGNet模型实现图像分类识别

本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.

我报名参加金石计划1期挑战——瓜分10万奖池,这是我的第1篇文章,点击查看活动详情

 

在视觉领域可以分为: 1、图像分类  2、语义分割 3、实例分割 4、目标检测(跟踪) 5、关键点检测。 该篇主要讲解利用Tensorflow 对图像进行图像分类。

 

背景

 

深度学习框架在市面上有很多。比如Theano、Caffe、CNTK、MXnet 、Tensorflow等。今天讲解的就是主角Tensorflow。Tensorflow的前身是Google大脑项目的一个分布式机器学习训练框架,它是一个十分基础且集成度很高的系统,它的目标就是为研究超大型规模的视觉项目,后面延申到各个领域。Tensorflow 在2015年正式开源,开源的一个月内就收获到1w多的starts,这足以说明Tensorflow的优越性以及Google的影响力。在Api方面Tensorflow为了满足绝大部分的开发者需求,这也是Google的一贯作风,集成了Java、Go、Python、C++等编程语言。

 

开发步骤

 

特征提取

 

图像识别是一件很有趣的事,话不多说,咱们先了解下特征提取VGG in Tensorflow。官网地址:VGG in TensorFlow · Davi Frossard。

VGG 是牛津大学的 K. Simonyan 和 A. Zisserman 在论文“Very Deep Convolutional Networks for Large-Scale Image Recognition”中提出的卷积神经网络模型。该模型在 ImageNet 中实现了 92.7% 的 top-5 测试准确率,这是一个包含 1000 个类别的超过 1400 万张图像的数据集。 在这篇简短的文章中,我们提供了 VGG16 的实现以及从原始 Caffe 模型转换为 TensorFlow 的权重。这句话是VGGNet官方的介绍,直接从它提供的数字可以看出来,它的识别率是十分高的,是不是很激动,动起手来吧。

VGG19网络介绍

VGG19 的宏观架构如图所示。我们在 TensorFlow 中的文件 vgg19.py 中对其进行编码。请注意,我们包含一个预处理层,它采用像素值在 0-255 范围内的 RGB 图像并减去平均图像值(在整个 ImageNet 训练集上计算)。

具体的步骤如下

 

    1. 依赖加载

 

 

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import os
import scipy.io
import scipy.misc
from imagenet_classes import class_names

 

2.定义卷积、池化等函数

 

def _conv_layer(input,weight,bias):
    conv = tf.nn.conv2d(input,weight,strides=[1,1,1,1],padding="SAME")
    return tf.nn.bias_add(conv,bias)
def _pool_layer(input):
    return tf.nn.max_pool(input,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")
def preprocess(image,mean_pixel):
    '''简单预处理,全部图片减去平均值'''
    return image-mean_pixel
def unprocess(image,mean_pixel):
    return image+mean_pixel

 

3.图像的读取以及保存

 

def imread(path):
    return scipy.misc.imread(path)
def imsave(image,path):
    img = np.clip(image,0,255).astype(np.int8)
    scipy.misc.imsave(path,image)

 

4.定义网络结构

 

def net(data_path,input_image,sess=None):
    """
    读取VGG模型参数,搭建VGG网络
    :param data_path: VGG模型文件位置
    :param input_image: 输入测试图像
    :return:
    """
    layers = (
        'conv1_1', 'conv1_2', 'pool1',
        'conv2_1', 'conv2_2', 'pool2',
        'conv3_1', 'conv3_2', 'conv3_3','conv3_4', 'pool3',
        'conv4_1', 'conv4_2', 'conv4_3','conv4_4', 'pool4',
        'conv5_1', 'conv5_2', 'conv5_3','conv5_4', 'pool5',
          'fc1'  ,   'fc2'  ,   'fc3'  ,
        'softmax'
    )
    data = scipy.io.loadmat(data_path)
    mean = data["normalization"][0][0][0][0][0]
    input_image = np.array([preprocess(input_image, mean)]).astype(np.float32)#去除平均值
    net = {}
    current = input_image
    net["src_image"] = tf.constant(current)  # 存储数据
    count = 0 #计数存储
    for i in range(43):
        if str(data['layers'][0][i][0][0][0][0])[:4] == ("relu"):
            continue
        if str(data['layers'][0][i][0][0][0][0])[:4] == ("pool"):
            current = _pool_layer(current)
        elif str(data['layers'][0][i][0][0][0][0]) == ("softmax"):
            current = tf.nn.softmax(current)
        elif i == (37):
            shape = int(np.prod(current.get_shape()[1:]))
            current = tf.reshape(current, [-1, shape])
            kernels, bias = data['layers'][0][i][0][0][0][0]
            kernels = np.reshape(kernels,[-1,4096])
            bias = bias.reshape(-1)
            current = tf.nn.relu(tf.add(tf.matmul(current,kernels),bias))
        elif i == (39):
            kernels, bias = data['layers'][0][i][0][0][0][0]
            kernels = np.reshape(kernels,[4096,4096])
            bias = bias.reshape(-1)
            current = tf.nn.relu(tf.add(tf.matmul(current,kernels),bias))
        elif i == 41:
            kernels, bias = data['layers'][0][i][0][0][0][0]
            kernels = np.reshape(kernels, [4096, 1000])
            bias = bias.reshape(-1)
            current = tf.add(tf.matmul(current, kernels), bias)
        else:
            kernels,bias = data['layers'][0][i][0][0][0][0]
            #注意VGG存储方式为[,]
            #kernels = np.transpose(kernels,[1,0,2,3])
            bias = bias.reshape(-1)#降低维度
            current = tf.nn.relu(_conv_layer(current,kernels,bias))
        net[layers[count]] = current #存储数据
        count += 1
    return net, mean

 

5.加载模型进行识别

 

if __name__ == '__main__':
    VGG_PATH = "./one/imagenet-vgg-verydeep-19.mat"
    IMG_PATH = './one/3.jpg'
    input_image =imread(IMG_PATH)
    shape = (1, input_image.shape[0], input_image.shape[1], input_image.shape[2])
    with tf.Session() as sess:
        image = tf.placeholder('float', shape=shape)
        nets, mean_pixel, all_layers= net(VGG_PATH, image)
        input_image_pre=np.array([preprocess(input_image,mean_pixel)])
        layers = all_layers
 
        for i , layer in enumerate(layers):
            print("[%d/%d] %s" % (i+1,len(layers),layers))
            features = nets[layer].eval(feed_dict={image:input_image_pre})
            print("Type of 'feature' is ",type(features))
            print("Shape of 'features' is  %s" % (features.shape,))
            if 1:
                plt.figure(i+1,figsize=(10,5))
                plt.matshow(features[0,:,:,0],cmap=plt.cm.gray,fignum=i+1)
                plt.title(""+layer)
                plt.colorbar()
                plt.show()

 

总结

 

Tensorflow是一款十分不错的深度学习框架,它在工业上得到的十分的认可并进行了实践。因此,如果你还在犹豫生产落地使用框架,不要犹豫啦。VGGNet家族是一个十分优秀的网络结构,它在处理特征提取过程中,也是得到了很多公司和研究学者的认可,比较着名的有VGG16、VGG19等。

Be First to Comment

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注