Press "Enter" to skip to content

TensorFlow读写数据

Last updated on 2019年3月17日

前言

只有光头才能变强。

文本已收录至我的GitHub仓库,欢迎Star: https://github.com/ZhongFuCheng3y/3y

 

回顾前面:

从零开始学TensorFlow【01-搭建环境、HelloWorld篇】
什幺是TensorFlow?

众所周知,要训练出一个模型,首先我们得有数据。我们第一个例子中,直接使用dataset的api去加载mnist的数据。(minst的数据要幺我们是提前下载好,放在对应的目录上,要幺就根据他给的url直接从网上下载)。

 

一般来说,我们使用TensorFlow是从TFRecord文件中读取数据的。

 

TFRecord 文件格式是一种面向记录的简单 二进制格式 ,很多 TensorFlow 应用采用此格式来训练数据

 

所以,这篇文章来聊聊怎幺 读取 TFRecord文件的数据。

 

一、入门对数据集的数据进行读和写

 

首先,我们来体验一下怎幺造一个TFRecord文件,怎幺从TFRecord文件中读取数据,遍历(消费)这些数据。

 

1.1 造一个TFRecord文件

 

现在,我们还没有TFRecord文件,我们可以自己简单写一个:

 

def write_sample_to_tfrecord():
    gmv_values = np.arange(10)
    click_values = np.arange(10)
    label_values = np.arange(10)
    with tf.python_io.TFRecordWriter("/Users/zhongfucheng/data/fashin/demo.tfrecord", options=None) as writer:
        for _ in range(10):
            feature_internal = {
                "gmv": tf.train.Feature(float_list=tf.train.FloatList(value=[gmv_values[_]])),
                "click": tf.train.Feature(int64_list=tf.train.Int64List(value=[click_values[_]])),
                "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[label_values[_]]))
            }
            features_extern = tf.train.Features(feature=feature_internal)
            # 使用tf.train.Example将features编码数据封装成特定的PB协议格式
            # example = tf.train.Example(features=tf.train.Features(feature=features_extern))
            example = tf.train.Example(features=features_extern)
            # 将example数据系列化为字符串
            example_str = example.SerializeToString()
            # 将系列化为字符串的example数据写入协议缓冲区
            writer.write(example_str)

if __name__ == '__main__':
    write_sample_to_tfrecord()

 

我相信大家代码应该是能够看得懂的,其实就是分了几步:

生成TFRecord Writer
tf.train.Feature生成协议信息
使用tf.train.Example将features编码数据封装成特定的PB协议格式
将example数据系列化为字符串
将系列化为字符串的example数据写入协议缓冲区

参考资料:

https://zhuanlan.zhihu.com/p/31992460

ok,现在我们就有了一个TFRecord文件啦。

 

1.2 读取TFRecord文件

 

tf.data.TFRecordDataset

 

demo代码如下:

 

import tensorflow as tf

def read_tensorflow_tfrecord_files():
    # 定义消费缓冲区协议的parser,作为dataset.map()方法中传入的lambda:
    def _parse_function(single_sample):
        features = {
            "gmv": tf.FixedLenFeature([1], tf.float32),
            "click": tf.FixedLenFeature([1], tf.int64),  # ()或者[]没啥影响
            "label": tf.FixedLenFeature([1], tf.int64)
        }
        parsed_features = tf.parse_single_example(single_sample, features=features)
        # 对parsed 之后的值进行cast.
        gmv = tf.cast(parsed_features["gmv"], tf.float64)
        click = tf.cast(parsed_features["click"], tf.float64)
        label = tf.cast(parsed_features["label"], tf.float64)
        return gmv, click, label
    # 开始定义dataset以及解析tfrecord格式
    filenames = tf.placeholder(tf.string, shape=[None])
    # 定义dataset 和 一些列trasformation method
    dataset = tf.data.TFRecordDataset(filenames)
    parsed_dataset = dataset.map(_parse_function)  # 消费缓冲区需要定义在dataset 的map 函数中
    batchd_dataset = parsed_dataset.batch(3)
    # 创建Iterator
    sample_iter = batchd_dataset.make_initializable_iterator()
    # 获取next_sample
    gmv, click, label = sample_iter.get_next()
    training_filenames = [
        "/Users/zhongfucheng/data/fashin/demo.tfrecord"]
    with tf.Session() as session:
        # 初始化带参数的Iterator
        session.run(sample_iter.initializer, feed_dict={filenames: training_filenames})
        # 读取文件
        print(session.run(gmv))

if __name__ == '__main__':
    read_tensorflow_tfrecord_files()

 

无意外的话,我们可以输出这样的结果:

 

[[0.]
 [1.]
 [2.]]

 

ok,现在我们已经大概知道怎幺写一个TFRecord文件,以及怎幺读取TFRecord文件的数据,并且消费这些数据了。

 

二、epoch和batchSize术语解释

 

我在学习TensorFlow翻阅资料时,经常看到一些机器学习的术语,由于自己没啥机器学习的基础,所以很多时候看到一些专业名词就开始懵逼了。

 

2.1epoch

 

当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一个epoch。

 

这可能使我们跟 dataset.repeat() 方法联系起来,这个方法可以使当前数据集 重复 一遍。比如说,原有的数据集是 [1,2,3,4,5] ,如果我调用 dataset.repeat(2) 的话,那幺我们的数据集就变成了 [1,2,3,4,5],[1,2,3,4,5]

所以会有个说法:假设原先的数据是一个epoch,使用repeat(5)就可以将之变成5个epoch

2.2batchSize

 

一般来说我们的数据集都是比较大的, 无法一次性 将整个数据集的数据喂进神经网络中,所以我们会将数据集分成好几个部分。每次喂多少条样本进神经网络,这个叫做batchSize。

 

在TensorFlow也提供了方法给我们设置: dataset.batch() ,在API中是这样介绍batchSize的:

 

representing the number of consecutive elements of this dataset to combine in a single batch

 

我们一般在每次训练之前,会将 整个数据集的顺序打乱 ,提高我们模型训练的效果。这里我们用到的api是: dataset.shffle();

 

三、再来聊聊dataset

 

我从官网的介绍中截了一个dataset的方法图(部分):

 

 

dataset的功能主要有以下三种:

 

创建dataset实例

通过文件创建(比如TFRecord)
通过内存创建

对数据集的数据进行变换

比如上面的batch(),常见的 map(),flat_map(),zip(),repeat() 等等
文档中一般都有给出 例子 ,跑一下一般就知道对应的意思了。

创建迭代器,遍历数据集的数据

3.1 聊聊迭代器

 

迭代器可以分为四种:

单次。对数据集进行一次迭代,不支持参数化

可初始化迭代

使用前需要进行初始化, 支持传入参数 。面向的是同一个DataSet

可重新初始化:同一个Iterator从不同的DataSet中读取数据

DataSet的对象具有相同的结构,可以使用 tf.data.Iterator.from_structure 来进行初始化
问题: 每次 Iterator 切换时,数据都从头开始打印了

可馈送(也是通过对象相同的结果来创建的迭代器)

可让您在 两个数据集之间切换 的可馈送迭代器
通过一个string handler来实现。
可馈送的 Iterator 在不同的 Iterator 切换的时候, 可以做到不从头开始 。

简单总结:

1、 单次 Iterator ,它最简单,但无法重用,无法处理数据集参数化的要求。
2、 可以初始化的 Iterator ,它可以满足 Dataset 重复加载数据,满足了参数化要求。
3、可重新初始化的 Iterator,它可以对接不同的 Dataset,也就是可以从不同的 Dataset 中读取数据。
4、可馈送的 Iterator,它可以通过 feeding 的方式,让程序在运行时候选择正确的 Iterator,它和可重新初始化的 Iterator 不同的地方就是它的数据在不同的 Iterator 切换时, 可以做到不重头开始读取数据 。

string handler(可馈送的 Iterator)这种方式是最常使用的,我当时也写了一个Demo来使用了一下,代码如下:

 

def read_tensorflow_tfrecord_files():
    # 开始定义dataset以及解析tfrecord格式.
    train_filenames = tf.placeholder(tf.string, shape=[None])
    vali_filenames = tf.placeholder(tf.string, shape=[None])
    # 加载train_dataset   batch_inputs这个方法每个人都不一样的,这个方法我就不给了。
    train_dataset = batch_inputs([
        train_filenames], batch_size=5, type=False,
        num_epochs=2, num_preprocess_threads=3)
    # 加载validation_dataset  batch_inputs这个方法每个人都不一样的,这个方法我就不给了。
    validation_dataset = batch_inputs([vali_filenames
                                       ], batch_size=5, type=False,
                                      num_epochs=2, num_preprocess_threads=3)
    # 创建出string_handler()的迭代器(通过相同数据结构的dataset来构建)
    handle = tf.placeholder(tf.string, shape=[])
    iterator = tf.data.Iterator.from_string_handle(
        handle, train_dataset.output_types, train_dataset.output_shapes)
    # 有了迭代器就可以调用next方法了。
    itemid = iterator.get_next()
    # 指定哪种具体的迭代器,有单次迭代的,有初始化的。
    training_iterator = train_dataset.make_initializable_iterator()
    validation_iterator = validation_dataset.make_initializable_iterator()
    # 定义出placeholder的值
    training_filenames = [
        "/Users/zhongfucheng/tfrecord_test/data01aa"]
    validation_filenames = ["/Users/zhongfucheng/tfrecord_validation/part-r-00766"]
    with tf.Session() as sess:
        # 初始化迭代器
        training_handle = sess.run(training_iterator.string_handle())
        validation_handle = sess.run(validation_iterator.string_handle())
        for _ in range(2):
            sess.run(training_iterator.initializer, feed_dict={train_filenames: training_filenames})
            print("this is training iterator ----")
            for _ in range(5):
                print(sess.run(itemid, feed_dict={handle: training_handle}))
            sess.run(validation_iterator.initializer,
                     feed_dict={vali_filenames: validation_filenames})
            print("this is validation iterator ")
            for _ in range(5):
                print(sess.run(itemid, feed_dict={vali_filenames: validation_filenames, handle: validation_handle}))

if __name__ == '__main__':
    read_tensorflow_tfrecord_files()

 

参考资料:

https://blog.csdn.net/briblue/article/details/80962728

3.2 dataset参考资料

 

在翻阅资料时,发现写得不错的一些博客:

https://www.jianshu.com/p/91803a119f18
https://irvingzhang0512.github.io/2018/04/19/tensorflow-api-2/
http://www.feiguyunai.com/index.php/2017/12/25/pyhtonai-ml-dataprocess-datasetapi/

Be First to Comment

发表评论

电子邮件地址不会被公开。 必填项已用*标注