Press "Enter" to skip to content

用Python和NumPy学习《深度学习》中的线性代数基础

本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.

作者按照《深度学习》(Ian Goodfellow、Yoshua Bengio、Aaron Courville)这本书的第二章的线性代数内容来逐一介绍机器学习中的线性代数基础,读者可以在原书、中译版或中文笔记中查看每个小节的基础介绍,或直接参考该博客的推导部分。作者除了对部分概念进行详细推导之外,还添加了多个示例,并给出了 / 的实现代码。

  • 博客地址:https://hadrienj.github.io/posts/Deep-Learning-Book-Series-Introduction/

  • GitHub 地址:https://github.com/hadrienj/deepLearningBook-Notes

  • 《深度学习》中文版下载地址:https://github.com/exacity/deeplearningbook-chinese

《深度学习》第二章目录。

博客目录。

纯符号的公式推导可能令人觉得过于抽象,在博客中作者一般先列出具体案例,再给出符号表述。

例如,用带彩色的数字方阵来解释基本定义:

标量、向量、矩阵、张量的区别。

符号表述:

再给出 python/numpy 示例代码:

用 numpy 构建数组。

对某些运算关系,作者给出了直观可理解的图示:

单位元和由矩阵 A 变换后的椭圆,其中的向量是 A 的两个特征向量。

对于某些较为复杂的对象,作者还给出了函数可视化和交互界面。例如,在特征值分解的二次型变换问题中,二次型函数

其正定型、负定型、不定型的可视化:

正定型函数的交互界面:

最后一个小节的 PCA(主成分分析)问题,是对之前介绍概念的综合运用,读者可以将其作为自主练习。

PCA 作为坐标系统变换问题。

协方差矩阵的特征向量。

旋转数据以在一个轴上得到最大方差。

Be First to Comment

发表评论

电子邮件地址不会被公开。 必填项已用*标注