Press "Enter" to skip to content

百度实体链接比赛后记:行为建模和实体链接

前几个月曾参加了 百度的实体链接比赛 ,这是CCKS2019的评测任务之一,官方称之为“实体链指”,比赛于前几个星期完全结束。笔者最终的F1是0.78左右(冠军是0.80),排在第14名,成绩并不突出(唯一的特色是模型很轻量级,GTX1060都可以轻松跑起来),所以本文只是纯粹的记录过程,大牛们请一笑置之~

 

所谓实体链接,主要指的是在已有一个知识库的情况下,预测输入query的某个实体对应知识库id。也就是说,知识库里边记录了很多实体,对于同一个名字的实体可能会有多个解释,每个解释用一个唯一id编号,我们要做的就是预测query中的实体究竟对应哪一个解释(id)。这是基于知识图谱的问答系统的必要步骤。

 

实体链接是为基于知识图谱的问答来准备的,所以首先我们要有一个知识库(kb_data),样例如下:

 

{"alias": ["胜利"], "subject_id": "10001", "subject": "胜利", "type": ["Thing"], "data": [{"predicate": "摘要", "object": "英雄联盟胜利系列皮肤是拳头公司制作的具有纪念意义限定系列皮肤之一。拳头公司制作的具有纪念意义限定系列皮肤还包括英雄联盟冠军系列皮肤、MSI季中冠军赛征服者系列以及英雄联盟全球总决赛冠军系列皮肤。每到赛季结束时,拳头公司都会制作胜利系列皮肤作为赛季奖励来认可那些在排位赛中勇猛拼搏达到黄金段位的玩家。"}, {"predicate": "制作方", "object": "Riot Games"}, {"predicate": "外文名", "object": "Victorious"}, {"predicate": "来源", "object": "英雄联盟"}, {"predicate": "中文名", "object": "胜利"}, {"predicate": "属性", "object": "虚拟"}, {"predicate": "义项描述", "object": "游戏《英雄联盟》胜利系列限定皮肤"}]}
{"alias": ["张三的歌"], "subject_id": "10002", "subject": "张三的歌", "type": ["CreativeWork"], "data": [{"predicate": "摘要", "object": "《张三的歌》这首经典老歌,词曲作者是张子石。最早收录于李寿全的专辑《8又二分之一》当中。李寿全作为台湾民谣时代的推动人,在80年代中后期有着举足轻重的地位,而这首《张三的歌》出现在当时的背景之下,带来了无可比拟的社会效应,也为那个年代留下了无法抹去的回忆。随着时间的推移,陈翔、齐秦、吴宗宪、蔡琴、青鸟飞鱼等歌手都曾翻唱过。"}, {"predicate": "歌曲原唱", "object": "李寿全"}, {"predicate": "谱曲", "object": "张子石"}, {"predicate": "歌曲时长", "object": "3分58秒"}, {"predicate": "歌曲语言", "object": "普通话"}, {"predicate": "音乐风格", "object": "民谣"}, {"predicate": "唱片公司", "object": "飞碟唱片"}, {"predicate": "翻唱", "object": "齐秦、苏芮、南方二重唱等"}, {"predicate": "填词", "object": "张子石"}, {"predicate": "发行时间", "object": "1986-08-01"}, {"predicate": "中文名称", "object": "张三的歌"}, {"predicate": "所属专辑", "object": "8又二分之一"}, {"predicate": "义项描述", "object": "李寿全演唱歌曲"}, {"predicate": "标签", "object": "单曲"}, {"predicate": "标签", "object": "音乐作品"}]}
...
...

 

知识库包括很多实体,每个实体的信息包括一个唯一的实体id、别名以及实体相关的属性和属性值等,说白了,这其实就是一个知识图谱。知识库的特点是,“实体”不一定是指特别的专有名词,还包括常见的名词、动词、形容词等,比如“胜利”、“美丽”等。此外,同名实体很多(所以才会有实体链接这个任务),比如在这比赛提供的知识库中,名为“胜利”的实体共有15个,如下:

 

{"alias": ["胜利"], "subject_id": "10001", "subject": "胜利", "type": ["Thing"], "data": [{"predicate": "摘要", "object": "英雄联盟胜利系列皮肤是拳头公司制作的具有纪念意义限定系列皮肤之一。拳头公司制作的具有纪念意义限定系列皮肤还包括英雄联盟冠军系列皮肤、MSI季中冠军赛征服者系列以及英雄联盟全球总决赛冠军系列皮肤。每到赛季结束时,拳头公司都会制作胜利系列皮肤作为赛季奖励来认可那些在排位赛中勇猛拼搏达到黄金段位的玩家。"}, {"predicate": "制作方", "object": "Riot Games"}, {"predicate": "外文名", "object": "Victorious"}, {"predicate": "来源", "object": "英雄联盟"}, {"predicate": "中文名", "object": "胜利"}, {"predicate": "属性", "object": "虚拟"}, {"predicate": "义项描述", "object": "游戏《英雄联盟》胜利系列限定皮肤"}]}
{"alias": ["胜利"], "subject_id": "19044", "type": ["Vocabulary"], "data": [{"predicate": "摘要", "object": "胜利,汉语词汇。拼音:shèng lì胜利,指达到预期的目的。与“失败”相对。有“成功”的意思,古代打仗成功称胜利,比赛夺冠胜利称“成功”。其他寓意也很广泛(如:一件事坚持到了最后也称胜利)。胜利在英语中都为victory [Victory ]"}, {"predicate": "外文名", "object": "win"}, {"predicate": "反义词", "object": "失败"}, {"predicate": "拼音", "object": "shèng lì"}, {"predicate": "中文名", "object": "胜利"}, {"predicate": "释义", "object": "获得成功或达到目的"}, {"predicate": "义项描述", "object": "汉语词语"}, {"predicate": "标签", "object": "文化"}], "subject": "胜利"}
{"alias": ["胜利"], "subject_id": "37234", "type": ["Thing"], "data": [{"predicate": "摘要", "object": "《胜利》是由[英] 约瑟夫·康拉德所着一部讽喻小说,新华出版社出版发行。"}, {"predicate": "作者", "object": "[英] 约瑟夫·康拉德"}, {"predicate": "ISBN", "object": "9787516620762"}, {"predicate": "书名", "object": "胜利"}, {"predicate": "出版社", "object": "新华出版社"}, {"predicate": "义项描述", "object": "[英] 约瑟夫·康拉德所着小说"}], "subject": "胜利"}
...
...

 

除了知识库外,我们还有一批标注样本,格式如下:

 

{"text_id": "1", "text": "南京南站:坐高铁在南京南站下。南京南站", "mention_data": [{"kb_id": "311223", "mention": "南京南站", "offset": "0"}, {"kb_id": "341096", "mention": "高铁", "offset": "6"}, {"kb_id": "311223", "mention": "南京南站", "offset": "9"}, {"kb_id": "311223", "mention": "南京南站", "offset": "15"}]}
{"text_id": "2", "text": "比特币吸粉无数,但央行的心另有所属|界面新闻 · jmedia", "mention_data": [{"kb_id": "278410", "mention": "比特币", "offset": "0"}, {"kb_id": "199602", "mention": "央行", "offset": "9"}, {"kb_id": "215472", "mention": "界面新闻", "offset": "18"}]}
{"text_id": "3", "text": "解读《万历十五年》", "mention_data": [{"kb_id": "131751", "mention": "万历十五年", "offset": "3"}]}
{"text_id": "4", "text": "《时间的针脚第一季》迅雷下载_完整版在线观看_美剧...", "mention_data": [{"kb_id": "NIL", "mention": "时间的针脚第一季", "offset": "1"}, {"kb_id": "57067", "mention": "迅雷", "offset": "10"}, {"kb_id": "394479", "mention": "美剧", "offset": "23"}]}
...
...

 

这个训练数据标注的是query文本(text)中的实体(mention)、实体所在的位置(offset)以及对应在知识库里边的实体id(kb_id),每个query文本可能识别出多个实体。由于预测的时候仅仅提供query文本,因此 需要同时做实体识别和实体链接

 

上面已经说到,在百度这个比赛中,不仅仅需要找到实体对应的知识库id,还需要先把实体找出来,换言之,我们需要先做实体识别,然后再做实体链接。在这一节中,我们结合赛题数据对这两个任务进行基本分析,以得到后面解决问题的思路。

 

实体识别的技术显然已经很成熟了,标配的方案是BiLSTM+CRF,当然最近也流行用Bert+CRF进行Fine Tune。在本文的模型中,实体识别的模型是“LSTM+半指针半标注结构”,外加一些人工特征,这样做既是出于速度上的考虑,也是结合本身标注数据特点来做的。

 

而实体链接这一步,我们看到知识库中每个实体的对应着多个“属性-属性值”对。分别处理这些“属性-属性值”对显得颇为繁琐,所以我干脆将所有的“属性-属性值”都拼成一个字符串,当作该实体的完整描述了,例如下面是名为“胜利”的某个实体拼接成字符串后的完整描述:

 

摘要:英雄联盟胜利系列皮肤是拳头公司制作的具有纪念意义限定系列皮肤之一。拳头公司制作的具有纪念意义限定系列皮肤还包括英雄联盟冠军系列皮肤、msi季中冠军赛征服者系列以及英雄联盟全球总决赛冠军系列皮肤。每到赛季结束时,拳头公司都会制作胜利系列皮肤作为赛季奖励来认可那些在排位赛中勇猛拼搏达到黄金段位的玩家。

 

制作方:riot games

 

外文名:victorious

 

来源:英雄联盟

 

中文名:胜利

 

属性:虚拟

 

义项描述:游戏《英雄联盟》胜利系列限定皮肤

 

名称:胜利

 

这样一来,每个实体对应的是一个(通常比较长的)文本描述,我们要做实体链接,实际上就是要将query文本、实体span与这个实体描述匹配起来。总的来说, 比较接近于两个文本的匹配问题 ,所以笔者采用的做法是将query文本和实体描述文本分别编码,然后在query文本中标记出某个实体位置,再接着query文本和实体描述的编码通过Attention融合起来,最后变成一个二分类问题。

 

这样做的好处是训练成本比较低,缺点是每次识别处理query文本的一个实体,以及每次只能遍历知识库中的单个实体,总的来说采样效率较低,训练时间相对会长一些。预测的时候则是遍历所有同名实体,逐个跟query文本、实体span做二分类,最后输出概率最高的那个。

 

这里逐一介绍笔者的处理和建模过程。在笔者的实现里,实体标注和实体链接两个部分是联合训练的,并且共享了部分模块。模型的整体思想(包括训练方案)都跟 《基于DGCNN和概率图的轻量级信息抽取模型》 一文类似,读者也可以对比着来阅读。

 

 

本文的实体链接模型总图(可以点击查看大图)

 

首先是实体识别部分,分“基本模型”和“人工特征”两部分介绍。

 

 

本文的实体识别模型

 

“基本模型”是指神经网络部分,通过传入的字词混合Embedding和人工特征来做字标注,标注结构依然是笔者之前构思的“半指针半标注结构”(参考这里和 这里 )。

 

不同于以往用全CNN的习惯,本次模型主要还是用到了双向LSTM,因为这一次不打算将模型做得太深,而模型非常浅(只有一两层)的时候,双向LSTM往往比CNN和Attention都要好。

 

由于已经给出了知识库,并且识别出来的实体名都是在知识库里边出现过的(知识库的alias字段,如果没出现过可以视为标注错误),所以实体识别的一个baseline是直接把知识库里边所有的alias拿出来,组成一个词库,然后根据这个词库做一个最大匹配模型。这样做实体的召回率为92%左右,但是精度不高,只有30%左右,总的F1约为40%。

 

接着,我们可以观察到,在训练数据中,对实体的标注是相当“任性”的,总的来说就是主观因素相当大,可以说这根本就不是什幺基于语义的实体识别,而更多的是“标注人员标注轨迹建模”,也就是说我们主要是在努力标注人员的标注习惯,而不是建立在语义理解基础上的实体识别。

 

比如,前面示意图中的query“《暗警》迅雷下载/在线观看 -犯罪/历史”只标注出了“暗警”、“迅雷”、“历史”三个实体,事实上“下载”、“在线”、“观看”、“犯罪”都是知识库里边的实体,而且存在能够适配这个query的实体id。那为什幺不标?只能说标注人员不喜欢标/不想标/没力气标了~还有一种情况是:比如“高清视频”,在有些query中“高清视频”是作为一整个实体被标注出来的,而有些query中则是作为“高清”、“视频”两个实体标注的(因为“高清视频”、“高清”、“视频”都是知识库里边的实体)。

 

所以,有很多实体识别结果是没有什幺道理可言的,就是标注人员的习惯而已。而为了更好地拟合标注人员的标注习惯,我们可以通过训练集做一些统计,统计一下知识库的哪些实体被标注得多,哪些实体标注得少,这样就可以对知识库的实体做一个基本的过滤(过滤细节参考后面的开源代码),用过滤后的实体集做词典来构建最大匹配模型,最终的实体召回率在91.8%左右,但是精度可以达到60%,F1可以达到70%+。

 

也就是说,只要通过简单的统计和最大匹配,就可以将实体识别这一步的F1做到70%+,我们把这个最大匹配的结果转为0/1特征传入到基本模型中,相当于用基本模型在最大匹配的结果上作进一步的过滤,最终实体识别的F1约为81%(具体值不记得了)。

 

现在是实体链接这一步,依然分“基本模型”和“人工特征”两部分介绍,依然是一个相当朴素的基准模型基础上结合人工特征来提升。

 

在实体链接的模型中,我们要做的事情是“判断 query中的某个实体知识库中某个同名实体 是否匹配”,为此,我们就需要随机采样:从query的所有识别出的实体中随机采样一个,然后从知识库里边所有同名实体中采样一个。

 

 

本文的实体链接模型

 

对于query,我们先沿用实体识别这一步对query文本的编码序列,然后将采样到的实体用一个0/1序列来标记,拼接到这个编码序列中,同时拼接到编码序列的还有一些人工特征,拼接完成后再做一个BiLSTM,得到最终的编码序列$\boldsymbol{Q}$;在同名实体这一边,把同名实体的描述拿出来后,经过Embedding层(跟query的Embedding共享)后再接一个BiLSTM,就完成对实体描述的编码$\boldsymbol{D}$了。

 

有了两者的编码序列后,就可以做Attention了,如 《〈Attention is All You Need〉浅读(简介+代码)》 所说,Attention三要素就是query、key、value,这里我们先用$\boldsymbol{Q}$做query、$\boldsymbol{D}$做key和value做一次Attention,然后再用$\boldsymbol{D}$做query、$\boldsymbol{Q}$做key和value做一次Attention,两次Attention分别用MaxPooling得到固定长度的向量,然后拼接起来,接一个全连接做2分类。

 

实体链接中用到的人工特征是以query主体的,最终生成的是跟query一样长度的向量序列,拼接到query的编码结果中。在本文的模型的,用到的人工特征有三个:

 

1、query的每个字是否在实体描述中出现过(对应一个0/1序列);
2、query和实体描述都分词,然后判断query每个词是否在实体描述中出现过(对应一个0/1序列,每个词对应的标记要重复词的长度那幺多次,以保证得到通常长度的序列);
3、query中的每个词/片段,是否为该实体的某个object(对应一个0/1序列,object的含义参考文章开头给出的知识库样例)。

 

印象中这三个特征对实体链接的准确率提升还是比较明显的(但具体幅度忘记了)。

 

此外,在预测的时候,还用到了一个统计结果。前面已经强调过,实体识别这一步其实更像是“标注行为建模”而不是“语义理解”,而且带有相当多的随机性,事实上实体链接这一步也是如此。我们可以统计发现,对于某些实体,它们在知识库中可能会有很多同名实体,但是被标注出来的可能只有其中几个,剩下的说不定标注人员看都没看,也就是说,本来可能是50选1的问题,在标注人员的标注习惯里边可能变成了5选1。

 

于是我们可以对训练集所有出现过的实体及其对应的实体id进行统计,这样一来对于每个实体名我们都可以得到一个分布,这个分布描述的是当前名字的实体被标注的id的分布情况,如果分布相当集中在其中几个id中,那幺我们干脆就只保留这几个id好了,剩下的同名实体全部去掉好了。事后发现,这样既提高了预测速度,也提高了准确性。

 

Github地址: https://github.com/bojone/el-2019

 

代码测试环境是Python 2.7 + Keras 2.2.4 + Tensorflow 1.8,整个模型只需要一个GTX1060 6G版就可以跑起来,非常轻松~其他部分跟 之前的信息抽取模型的实验炼丹 差不多,其实代码也是在那个基础上改过来的,自然差别不大。

 

本文分享了一次实体链接比赛的参赛过程,从模型上看整体模型比较朴素,主要效果提升在于所提出的人工特征。这些人工特征主要是人工观察数据特点得出的统计特征,属于比赛的一些trick,事实上这些trick有投机取巧之嫌,未必能在真正的生产环境中用到,但却紧密结合了赛题数据特点。

 

还是那句话,笔者更倾向于认为这更像是一次标注行为建模,而不是真正的语义理解竞赛,尤其是在实体识别这一步,主观性太强了,是整个比赛的主要瓶颈之一。为了提升最终分数,我们必须要花相当大的力气做好实体识别这一步,但是做好实体识别这一步,只能说你更好地拟合了标注人员的行为,而不是真正最好了语义上的实体识别,对比赛的初衷——实体链接——更没有太大帮助。

 

而且真的是生产环境的话,对实体识别往往是有标准方法的,所以通常只需要做好实体链接。这是笔者所认为的这次比赛的失策之处。

 

当然,标注数据来之不易,还是感谢百度大佬举办比赛以及提供标注数据~

 

转载到请包括本文地址: https://kexue.fm/archives/6919

 

更详细的转载事宜请参考: 《科学空间FAQ》

 

如果您还有什幺疑惑或建议,欢迎在下方评论区继续讨论。

 

如果您觉得本文还不错,欢迎/本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!

 

如果您需要引用本文,请参考:

 

苏剑林. (2019, Sep 03). 《百度实体链接比赛后记:行为建模和实体链接 》[Blog post]. Retrieved from https://kexue.fm/archives/6919

Be First to Comment

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注