Press "Enter" to skip to content

[译] Python 中的无监督学习算法

本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.

无监督学习是一种用于在数据中查找模式的机器学习技术。提供给无监督算法的数据是没有标记的,这意味着只给出输入变量(X)而没有相应的输出变量。在无监督学习中,算法自己来发现数据中有趣的结构。

人工智能研究主任 Yan Lecun 解释说,无监督学习 —— 在不明确告诉他们所做的一切是对还是错的情况下教机器自我学习 —— 是“真正的”人工智能的关键所在。

监督学习 Vs 无监督学习。

在监督学习中,系统试图从先前给出的示例中学习。(另一方面,在无监督学习中,系统会尝试直接从给定的示例中查找模式。)因此,如果数据集被标记则为监督问题,如果数据集未标记,则是无监督问题。

src
上面的图像是监督学习的一个例子; 我们使用回归算法找到特征之间的最佳拟合线。在无监督学习中,输入的数据以特征为基础而被分隔成不同的群集,并且预测它所属的群集。

重要术语

Feature: 用于进行预测的输入变量。
Predictions:输入示例时的模型输出。
Example: 一行数据集。一个 example 包含一个或多个特征以及可能的标签。
Label:特征结果。

无监督学习数据准备

在本文中,我们使用鸢尾花(Iris)数据集进行第一次预测。数据集包含一组有 150 个记录的集合,拥有 5 个属性 —— 花瓣长度、花瓣宽度、萼片长度、萼片宽度和类别。Iris Setosa、Iris Virginica 和 Iris Versicolor 是这三个类别。在我们的无监督算法中,我们给出了鸢尾花的这四个特征并预测它属于哪个类别。
我们使用 Python 中的 sklearn 库来加载鸢尾花数据集,使用 matplotlib 库来实现数据可视化。以下是用于研究数据集的代码段。

# 引入模块
from sklearn import datasets
import matplotlib.pyplot as plt
# 加载数据集
iris_df = datasets.load_iris()
# 数据集上的可用方法
print(dir(iris_df))
# 特征
print(iris_df.feature_names)
# 目标
print(iris_df.target)
# 目标名称
print(iris_df.target_names)
label = {0: 'red', 1: 'blue', 2: 'green'}
# 数据集切片
x_axis = iris_df.data[:, 0]  # Sepal Length
y_axis = iris_df.data[:, 2]  # Sepal Width
# 绘制
plt.scatter(x_axis, y_axis, c=iris_df.target)
plt.show()
复制代码
['DESCR', 'data', 'feature_names', 'target', 'target_names']
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]
['setosa' 'versicolor' 'virginica']
复制代码

紫色:Setosa,绿色: Versicolor,黄色:Virginica

聚类

在群集中,数据分为几组。简而言之,目的是将具有相似特征的群体分开并将其分配到对应的群集中。
可视化的例子,

在上图中,左边的图像是未进行分类的原始数据,右边的图像是聚类的(数据根据其特征进行分类)。当给出要预测的输入时,它根据它的特征检查它所属的群集,并进行预测。

Python 中的 K-均值 聚类算法

K 均值是一种迭代聚类算法,旨在在每次迭代中找到局部最大值。最初选择所需数量的群集。由于我们知道涉及 3 个类别,因此我们将算法编程为将数据分组为 3 个类别,方法是将参数 “n_clusters” 传递给我们的 K 均值模型。现在随机将三个点(输入)分配到三个群集中。基于每个点之间的质心距离,下一个给定的输入被分配到相应的群集。现在,重新计算所有群集的质心。
群集的每个质心都是一组特征值,用于定义结果组。检查质心特征权重可用于定性地解释每个群集代表什么类型的组。
我们从 sklearn 库导入 K 均值模型,拟合特征并预测。

Python 中的 K 均值算法实现。

# 引入模块
from sklearn import datasets
from sklearn.cluster import KMeans
# 加载数据集
iris_df = datasets.load_iris()
# 声明模型
model = KMeans(n_clusters=3)
# 拟合模型
model.fit(iris_df.data)
# 预测单个输入
predicted_label = model.predict([[7.2, 3.5, 0.8, 1.6]])
# 预测整个数据
all_predictions = model.predict(iris_df.data)
# 打印预测结果
print(predicted_label)
print(all_predictions)
复制代码
[0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 1 1 2 1 1 1 1 1 1 2 2 1 1 1 1 2 1 2 1 2 1 1 2 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 2]
复制代码

分层聚类

顾名思义,分层聚类是一种构建聚类层次结构的算法。该算法从分配给自己的群集的所有数据开始。然后将两个最接近的群集合并到同一群集中。最后,当只剩下一个群集时,该算法结束。
可以使用树形图显示分层聚类的完成过程。现在让我们看一下谷物数据的层次聚类的例子。数据集可以在这里找到。

Python 中分层聚类算法的实现。

# 引入模块
from scipy.cluster.hierarchy import linkage, dendrogram
import matplotlib.pyplot as plt
import pandas as pd
# 读入 DataFrame
seeds_df = pd.read_csv(
    "https://raw.githubusercontent.com/vihar/unsupervised-learning-with-python/master/seeds-less-rows.csv")
# 从 DataFrame 中删除谷物种类,稍后再保存
varieties = list(seeds_df.pop('grain_variety'))
# 将测量值提取为 NumPy 数组
samples = seeds_df.values
"""
使用带有 method ='complete' 关键字参数的
linkage()函数对样本执行分层聚类。
将结果合并。
"""
mergings = linkage(samples, method='complete')
"""
在合并时使用 dendrogram() 函数绘制树形图,
指定关键字参数 labels = varieties,leaf_rotation = 90
和 leaf_font_size = 6。
"""
dendrogram(mergings,
           labels=varieties,
           leaf_rotation=90,
           leaf_font_size=6,
           )
plt.show()
复制代码

K 均值和分层聚类之间的差异

  • 分层聚类不能很好地处理大数据,但 K 均值聚类可以。这是因为 K 均值的时间复杂度是线性的,即 O(n),而分层聚类的时间复杂度是二次的,即 O(n2)。
  • 在 K 均值聚类中,当我们从任意选择的聚类开始时,通过多次运行算法生成的结果可能会有所不同。然而在分层聚类中结果是可重现的。
  • 当群集的形状是超球形时(如 2D 中的圆圈,3D 中的球体),我们发现 K 均值工作良好。
  • K-均值不允许噪声数据,而在分层聚类中我们可以直接使用噪声数据集进行聚类。

t-SNE聚类

它是可视化的无监督学习方法之一。t-SNE 代表 t 分布的随机嵌入邻域 。它将高维空间映射到可以可视化的 2 维或 3 维空间。具体地,它通过二维或三维点对每个高维对象建模,使得相似对象由附近点建模,而非相似对象由远点以高概率建模。

用于鸢尾花数据集的 Python 中的 t-SNE 聚类实现

# 引入模块
from sklearn import datasets
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
# 加载数据集
iris_df = datasets.load_iris()
# 定义模型
model = TSNE(learning_rate=100)
# 拟合模型
transformed = model.fit_transform(iris_df.data)
# 绘制二维的 t-Sne
x_axis = transformed[:, 0]
y_axis = transformed[:, 1]
plt.scatter(x_axis, y_axis, c=iris_df.target)
plt.show()
复制代码

紫色:Setosa,绿色:Versicolor,黄色:Virginica
这里,由于鸢尾花数据集具有四个特征(4d),因此它被转换并以二维图形表示。类似地,t-SNE 模型可以应用于具有 n 个特征的数据集。

聚类

DBSCAN(具有噪声的基于密度的聚类方法)是一种流行的聚类算法,用于替代预测分析中的 K 均值。它不需要输入群集的数量就能运行。但是,你必须调整另外两个参数。
scikit-learn 实现提供了 eps 和 min_samples 参数的默认值,但是你通常需要调整这些参数。eps 参数是要在同一邻域中考虑的两个数据点之间的最大距离。min_samples 参数是邻域中被视为群集的数据点的最小数量。

Python 中的 DBSCAN 聚类

# 引入模块
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN
from sklearn.decomposition import PCA
# 加载数据集
iris = load_iris()
# 声明模型
dbscan = DBSCAN()
# 拟合
dbscan.fit(iris.data)
# 使用PCA进行转换
pca = PCA(n_components=2).fit(iris.data)
pca_2d = pca.transform(iris.data)
# 基于类别进行绘制
for i in range(0, pca_2d.shape[0]):
    if dbscan.labels_[i] == 0:
        c1 = plt.scatter(pca_2d[i, 0], pca_2d[i, 1], c='', marker='+')
    elif dbscan.labels_[i] == 1:
        c2 = plt.scatter(pca_2d[i, 0], pca_2d[i, 1], c='g', marker='o')
    elif dbscan.labels_[i] == -1:
        c3 = plt.scatter(pca_2d[i, 0], pca_2d[i, 1], c='b', marker='*')
plt.legend([c1, c2, c3], ['Cluster 1', 'Cluster 2', 'Noise'])
plt.title('DBSCAN finds 2 clusters and Noise')
plt.show()
复制代码

更多无监督技术:

  • 主成分分析 (PCA)
  • 异常检测
  • 自动编码
  • 深度信念网络
  • 赫布型学习
  • 生成式对抗网络(GANs)
  • 自组织映射

Be First to Comment

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注