Press "Enter" to skip to content

机器学习中常用的评估指标

矩阵中的每一行代表实例的预测类别,每一列代表实例的真实类别。

真正(True Positive , TP):被模型预测为正的正样本。
假正(False Positive , FP):被模型预测为正的负样本。
假负(False Negative , FN):被模型预测为负的正样本。
真负(True Negative , TN):被模型预测为负的负样本。
真正率(True Positive Rate,TPR):TPR=TP/(TP+FN),即被预测为正的正样本数 /正样本实际数。 召回率
假正率(False Positive Rate,FPR) :FPR=FP/(FP+TN),即被预测为正的负样本数 /负样本实际数。
假负率(False Negative Rate,FNR) :FNR=FN/(TP+FN),即被预测为负的正样本数 /正样本实际数。
真负率(True Negative Rate,TNR):TNR=TN/(TN+FP),即被预测为负的负样本数 /负样本实际数/2

 

1.1.1 sklearn相应的包

sklearn.metrics.confusion_matrix

from sklearn.metrics import confusion_matrix
# y_pred是预测标签
y_pred, y_true =[1,0,1,0], [0,0,1,0]
confusion_matrix(y_true=y_true, y_pred=y_pred)
# array([[2, 1],
#        [0, 1]], dtype=int64)

 

1.2 准确率(Accuracy)

分类正确的样本个数占总样本的比例.

1.2.1 sklearn相应的包

sklearn.metrics.accuracy_score

from sklearn.metrics import accuracy_score
# y_pred是预测标签
y_pred, y_true=[1,2,3,4], [2,2,3,4]
accuracy_score(y_true=y_true, y_pred=y_pred)
# 0.75

 

1.3 精确率(Precision): 预测正确的正样本占所有预测为正样本的比例

所有分正确的正样本/所有预测为正类的样本数.

也叫查准率

1.3.1 sklearn相应的包

sklearn.metrics.precision_score

from sklearn.metrics import precision_score
# y_pred是预测标签
y_pred, y_true =[1,0,1,0], [0,0,1,0]
precision_score(y_true=y_true, y_pred=y_pred)
# 0.5

 

1.4 召回率 (Recall): 预测正确的正样本占所有正样本比例

所有分正确的正样本/所有的正样本数.

也叫查全率

1.4.1 sklearn

sklearn.metrics.recall_score

from sklearn.metrics import recall_score
# y_pred是预测标签
y_pred, y_true =[1,0,1,0], [0,0,1,0]
recall_score(y_true=y_true, y_pred=y_pred)
# 1.0

 

1.5 F1 score

又称平衡分数, 定义为精确率和召回率的调和平均数

1.5.1 sklearn相应的包

sklearn.metrics.f1_score

from sklearn.metrics import f1_score
# y_pred是预测标签
y_pred, y_true =[1,0,1,0], [0,0,1,0]
f1_score(y_true=y_true, y_pred=y_pred)
# classification_report可以直接输出各个类的precision recall f1-score support
from sklearn.metrics import classification_report
# y_pred是预测标签
y_pred, y_true =[1,0,1,0], [0,0,1,0]
print(classification_report(y_true=y_true, y_pred=y_pred))

 

1.6 增益(Gain)和提升(Lift)图

 

1.7 ROC曲线

横轴: 负正类率(false postive rate FPR=FP/(FP+TN))特异度, 划分实例中所有负例占所有负例的比例;(1-Specificity)
纵轴: 真正类率(true postive rate TPR=TP/(TP+FN))灵敏度, Sensitivity(正类覆盖率), 即召回率

1.7.1 sklearn相应的包

sklearn.metrics.roc_curve , sklearn.metrics.auc

import matplotlib.pyplot as plt 
from sklearn.metrics import roc_curve, auc
# y_test:实际的标签, dataset_pred:预测的概率值。
fpr, tpr, thresholds = roc_curve(y_test, dataset_pred)
roc_auc = auc(fpr, tpr)  
#画图,只需要plt.plot(fpr,tpr),变量roc_auc只是记录auc的值,通过auc()函数能计算出来  
plt.plot(fpr, tpr, lw=1, label='ROC(area = %0.2f)' % (roc_auc))
plt.xlabel("FPR (False Positive Rate)")
plt.ylabel("TPR (True Positive Rate)")
plt.title("Receiver Operating Characteristic, ROC(AUC = %0.2f)"% (roc_auc))
plt.show()

 

1.8 AUC(Area Under Curve)

AUC即为ROC曲线下的面积(ROC的积分), 通常大于0.5小于1.
AUC值(面积)越大的分类器,性能越好.

1.8.1 sklearn相应的包

sklearn.metrics.roc_auc_score

from sklearn.metrics import roc_auc_score
# y_test:实际的标签, dataset_pred:预测的概率值。
roc_auc_score(y_test, dataset_pred)

 

1.9 PR曲线

横坐标: 精确率P
纵坐标: 召回率R
评价标准和ROC一样,先看平滑不平滑(蓝线明显好些)。一般来说,在同一测试集,位于上面的线比下面的好.
当P和R的值接近时,F1值最大.

1.10 多分类

precision_recall_fscore_support : 计算每个分类的precision, recall, fscore和support

2. 回归问题

在sklearn中, 通常函数以 _score 结尾返回一个值来最大化, 越高越好; 函数 _error_loss 结尾返回一个值来 minimize(最小化), 越低越好.

2.1 平均绝对误差(MAE)

平均绝对误差MAE(Mean Absolute Error)又被称为 l1
平均绝对误差是非负值,模型越好MAE越接近零.
公式

2.1.1 sklearn相应包

sklearn.metrics.mean_absolute_error

from sklearn.metrics import mean_absolute_error
y_true, y_pred = [3, -0.5, 2, 7], [2.5, 0.0, 2, 8]
mean_absolute_error(y_true, y_pred)
# 0.5

 

2.2 平均平方误差(MSE)

平均平方误差MSE(Mean Squared Error)又被称为 l2
本质是在残差平方和(RSS)的基础上除以了样本总量,得到了每个样本量上的平均误差.
均方误差是非负值,模型越好MSE越接近零.
公式

2.2.1 sklearn相应包

sklearn.metrics.mean_squared_error

from sklearn.metrics import mean_squared_error
y_true, y_pred = [3, -0.5, 2, 7], [2.5, 0.0, 2, 8]
mse = mean_squared_error(y_true, y_pred)
# 0.375
rmse = np.sqrt(mse)
# 0.6123724356957945

 

2.3 均方根误差(RMSE)

均方根误差RMSE (Root Mean Squared Errort), 即MSE开方.
公式

2.4 均方对数误差(MSLE)

均方对数误差MSLE (mean squared logarithmic error)
均方对数误差是非负值,模型越好MSLE越接近零.
公式

2.4.1 sklearn对应包

sklearn.metrics.mean_squared_log_error

2.5 中值绝对误差(MedAE)

中值绝对误差MedAE(median absolute error)
中值绝对误差是非负值,模型越好MSE越接近零.
公式

2.5.1 sklearn对应包

sklearn.metrics.mean_squared_log_error

2.5 可释方差得分 (EVS)

解释变异( Explained variance)是根据误差的方差计算得到.
最佳模型的可释方差分数值为1,模型越差值越小.
公式:

2.5.1 sklearn相关包

sklearn.metrics.explained_variance_score

2.6 决定系数(Coefficient of Determination)

R2 决定系数(r2_score) 判断回归方程的拟合程度.
最佳模型的R^{2}决定系数分数值为1,常数模型值为0,模型越差值越小.
公式

2.6.1 sklearn相关包

sklearn.metrics.r2_score

from sklearn.metrics import r2_score
y_true, y_pred = [3, -0.5, 2, 7], [2.5, 0.0, 2, 8]
r2_score(y_true, y_pred)

 

3. 聚类问题

聚类结果, 追求”簇内相似度”(intra-cluster similarity)高, 且”簇间相似度”(inter-cluster similarity)低.
聚类性能度量大致有两类:

将聚类结果与某个”参考模型”(reference model)进行比较, 称为”外部指标”(external index).
直接参考聚类结果而不利用任何参考模型, 称为”内部指标”(internal index).

3.1 外部指标

对数据集 , 假定通过聚类给出的簇划分为 , 参考模型给出的簇划分为 . 相应地, 令 与 分别表示与 和 对应的簇标记向量, 将样本两两配对考虑, 定义

其中

集合SS: 包含了在 中属于相同簇, 同时在 中也属于相同簇的样本对
集合SD: 包含了在 中属于相同簇, 同时在 中属于不同簇的样本对
集合DS: 包含了在 中属于不同簇, 同时在 中属于相同簇的样本对
集合DD: 包含了在 中属于不同簇, 同时在 中属于不同簇的样本对

由于每个样本对 仅能出现在一个集合中, 因此有

3.1.1 常用外部指标

Jacccard系数(Jaccard Coeffient, 简称JC)

FM指数(Fowlkes and Mallows Index, 简称FMI)

Rand指数(Rand Index, 简称RI)

上述性能指数的结果值均在 区间, 值越大越好.

3.1.2 互信息(Mutual Information)

两个随机变量的互信息(Mutual Information,简称MI)或转移信息(transinformation)是变量间相互依赖性的量度.

3.1.3 sklearn相应包

 

fowlkes_mallows_score
sklearn.metrics.adjusted_rand_score
sklearn.metrics.adjusted_mutual_info_score

 

3.2 内部指标

考虑聚类结果的簇划分 , 有以下定义

为簇 内样本间的平均距离
对应簇内样本间的最远距离
对应于簇 与簇 最近样本间的距离
对应簇 与簇 中心点的距离

3.2.1 常用内部指标

DB指数(Davies-Bouldin Index, 简称DBI)
DBI的可能最小值为0, 值越小越好.
Dunn指数(Dunn Index, 简称DI)
DI值越大越好

3.2.2 轮廓系数(Silhouette coefficient)

结合了聚类的凝聚度(Cohesion)和分离度(Separation), 用于评估聚类的效果。该值处于(-1,1)之间.
其中值越接近1表示样本与自己所在的簇中的样本很相似,并且与其他簇中的样本不相似;当样本点与簇外的样本更相似的时候,轮廓系数就为负; 当轮廓系数为0时, 则代表两个簇中的样本相 似度一致,两个簇本应该是一个簇.
公式
a(i)为样本i与簇内其它样本的平均距离, b(i)为样本i与其它某簇样本的平均距离, 多个簇b(i)取最小.

3.2.3 sklearn相应包

 

sklearn.metrics.davies_bouldin_score
sklearn.metrics.silhouette_score
sklearn.metrics.silhouette_score_samples

 

4. 关联问题

 

4.1 支持度(Support)

表示项目X, Y同时在总数据集中出现的概率, 其计算公式为
指N个交易记录中同时出现X和Y的交易记录所占的比例.

4.2 置信度(Confidence)

指在先导项X已经发生的情况下, 后续项Y也发生的概率, 即包含X的交易记录中同时也包含Y的交易记录所占的比例, 计算公式为:

4.3 提升度

表示含有X的条件下同时含有Y的概率, 与无论含不含X, 含有Y的概率之比, 计算公式
购买X的情况下, 购买Y的概率大于购买Y的概率, 则具有提升作用.

Be First to Comment

发表评论

电子邮件地址不会被公开。 必填项已用*标注