Press "Enter" to skip to content

CNN与RNN比较与组合

本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢.

CNN和RNN几乎占据着深度学习的半壁江山,所以本文将着重讲解CNN+RNN的对比,以及各种组合方式。
一、CNN与RNN对比
1. CNN卷积神经网络与RNN递归神经网络直观图

2. 相同点:
  • 传统神经网络的扩展。
  • 前向计算产生结果,反向计算模型更新。
  • 每层神经网络横向可以多个神经元共存,纵向可以有多层神经网络连接。

3. 不同点

  • CNN空间扩展,神经元与特征卷积;RNN时间扩展,神经元与多个时间输出计算
  • RNN可以用于描述时间上连续状态的输出,有记忆功能,CNN用于静态输出
  •  CNN高级100+深度,RNN深度有限

二、+RNN组合方式
1. CNN 特征提取,用于RNN语句生成图片标注。

2. RNN特征提取用于CNN内容分类视频分类。

3. CNN特征提取用于对话问答图片问答。

三、具体应用
1. 图片标注
基本思路:

  • 目标是产生标注的语句,是一个语句生成的任务,LSTM?
  • 描述的对象大量图像信息,图像信息表达,CNN?

CNN网络中全连接层特征描述图片,特征与LSTM输入结合。
具体步骤:
(1) 模型设计-特征提取
全连接层特征用来描述原图片
LSTM输入:word+图片特征;输出下一word。

(2) 模型设计-数据准备

  • 图片CNN特征提取
  • 图片标注生成Word2Vect 向量
  • 生成训练数据:图片特征+第n单词向量:第n+1单词向量。


(3) 模型训练:

  • 运用迁移学习,CNN特征,语句特征应用已有模型
  • 最终的输出模型是LSTM,训练过程的参数设定:梯度上限(gradient clipping), 学习率调整(adaptivelearning)
  • 训练时间很长。

(4) 模型运行:

  • CNN特征提取
  • CNN 特征+语句开头,单词逐个预测

2. 视频行为识别 :
视频中在发 生什么?

常用方法总结:
(1) RNN用于CNN特征融合:

  • CNN 特征提取
  • LSTM判断
  • 多次识别结果分析。

不同的特征不同输出。

或者:所有特征作为一个输出。

(2) RNN用于CNN特征筛选+融合:

  • 并不是所有的视频 图像包含确定分类信息
  • RNN用于确定哪些frame 是有用的
  • 对有用的图像特征 融合。

(3) RNN用于目标检测:

  • CNN直接产生目标候选区
  • LSTM对产生候选区融合(相邻时刻位置近 似)
  • 确定最终的精确位置。


(4) 多种模型综合:应用中,为了产生最好结果,多采用多模型ensemble形式。

Be First to Comment

发表评论

电子邮件地址不会被公开。 必填项已用*标注